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LOCALLY EQUATIONAL COMPLETENESS OF RINGS AND

SEMIGROUPS

M. R. CHIARO

Abstract. Hu has developed locally equational classes as a generalization

of equational classes. It is shown here that the lattice of equational classes of

rings is a proper sublattice of the lattice of locally equational classes of rings

but the locally equationally complete rings are precisely the equationally

complete rings. Using the equational and locally equational class operators

the locally equationally complete classes of semigroups are shown to be

those that are equationally complete.

1. Introduction. In [3], Hu defined locally equational classes and established

that the collection of locally equational classes of universal algebras of a fixed

type forms a lattice which includes the lattice of equational classes as a

sublattice.

Tarski [8] has shown the equationally complete rings to be the /wrings and

/j-zero rings. Contained in this paper is an example demonstrating that the

lattice of equational classes of rings is a proper sublattice of the lattice of

locally equational classes of rings, prompting investigation of the possible

existence of rings 9Í that are locally equationally complete but E(9t) is not an

atom in the lattice of locally equational classes of rings or is not an atom in

the lattice of equational classes of rings. The locally equationally complete

rings are shown to be precisely the equationally complete rings.

Kalicki and Scott [5] have characterized the equationally complete classes

of semigroups which are shown here to be the locally equationally complete

classes of semigroups. The proof techniques are operator-theoretic in nature

and are more elegant than the equational class case as the notion of identities

is avoided.

Basic concepts can be found in [1] and [2].

2. Preliminaries.

Definition. Let % be a class of algebras of the same type. Denote by

EL(%) the class of all algebras 91 = {A; F} having the following property:

for each finite subset U of A, there exists a finite family {33,},e/ in % and,

for each / £ /, a finite subset Vj of B¡ such that every identity valid in Vi for

all j S / is also valid in U. For a single algebra 23 denote EL({93}) by EL(23).

Definition. Let % be a class of algebras of the same type. % is locally

equational if EL(%) = %. EL(%) is the locally equational class generated by
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%. E(%) denotes the equational class generated by %.

Definition. If 21 = (A ; F} is an algebra, a local system of subalgebras of 91

is a set of subalgebras of 31 which is directed by set-inclusion and whose

set-theoretic union is A. If £ is a nonempty set of algebras such that any two

members of £ are subalgebras of some third member of £, there is a unique

algebra having £ as a local system of subalgebras and this algebra is called

the directed union of £.

Definition. Let D, H, S, PF and P denote the operators of forming,

respectively, directed unions, homomorphic images, subalgebras, direct

products of finite families and direct products of arbitrary families.

Theorem 2.1 [3]. If % is a class of algebras of the same type then

EL(%) = DHSP/r^) and EL(%) C E(9C). // % is a finite class of finite

algebras of the same type then EL(%) = E(9C).

Theorem 2.2 [3]. For a fixed type t of algebras, the locally equational classes

of type t form a lattice under set-inclusion which includes as a sublattice the

lattice of equational classes of type r.

Definition. Let 91 be a nontrivial algebra of type t. 91 is equationally

complete if E(9i) is an atom in the lattice of equational classes of type t. Let %

be a class of algebras of type t. % is equationally complete if E(%) is an atom

in the lattice of equational classes of type t.

Definition. Let 91 be a non trivial algebra of type t. 91 is locally equationally

complete if EL(W) is an atom in the lattice of locally equational classes of type

t. Let % be a class of algebras of type t. % is locally equationally complete if

EL(%) is an atom in the lattice of locally equational classes of type t.

Definition. For a prime number/?, a commutative ring 9t is called ap-ring

if pa = 0 and ap = a for each element a. 9Î is called a p-zero-ring if

pa = 0 = a ■ b for all elements a and b.

Definition. For any positive integer n > 1, 3t„ denotes the ring <Z„;

0, —, +, • > where Z„ is the set of all nonnegative integers less than n, + and

• are the binary operations of addition and multiplication modulo n, — is the

unary operation of additive inverse and 0 is the nullary operation of additive

identity. 3<&n denotes the same ring as 9in except • is defined so that a ■ b = 0

for all elements a and b.

Theorem 2.3 [7]. Let 9t be a nontrivialp-ring. 9t is isomorphic to a subdirect

power of 9tp.

Theorem 2.4 [8]. Every ring 9Í with more than one element has a subring

which is homomorphic, for some prime number p > 1, either to 9Î   or 3*31 .

3. Example. The following example shows that the locally equational class

generated by a ring 9t need not be an equational class. Hence the lattice of

equational classes of rings is a proper sublattice of the lattice of locally

equational classes of rings and atoms of the latter are of interest.
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Let 9Í = </?; 1, —,+,•> be the following ring: R is the multiplicative

group of complex roots of unity, + is the usual field multiplication, — is the

unary operation of forming reciprocals, 1 is the nullary operation corre-

sponding to the multiplicative identity of the complex field and • is the trivial

multiplication where r ■ s = 1 for all r, s E R.

All members of DHSP^SR) consist of elements of finite (group) order. But

the direct power 9Î" contains an element of infinite order so that SR" £ EL(9l).

Hence E£(9t) is not an equational class and is properly contained in E(9t).

4. Locally equationally complete rings.

Lemma 4.1. The ring $ip is locally equationally complete for any prime number

p>\.

Proof. Let &L be a nontrivial locally equational class of rings contained in

EL(mp). Let m E &L be nontrivial. 9x E EL(mp) = HSP(9L,) by Theorem 2.1

so SR is isomorphic to 9r'/3 where Dr' E SP(9x,,) and % is an ideal of 9t'.

Since 9r' is a subring of IIxeA^x f°r some A where each 9tA is 5L,, there

exists An E A such that {/(a0)I/ E R'} - Zp. If U = {«„ . . . , um) Ç Zp, let

/,.fm S R' such that ¿(a0) = «,., i - 1,... ,m. Then if {f + $|i =

I, . . . , m] = V, since identities in V must hold componentwise, each identity

of V is an identity of U. Therefore 9L, E EL(9r'/3) and 9lp E EL(9x). Hence

EL(¡Rp) = &L and Sx^ is locally equationally complete.

Lemma 4.2. Every nontrivial p-ring is locally equationally complete.

Proof. Any nontrivial p-ring is isomorphic to a subalgebra of a direct

power of mp by Theorem 2.3. Hence 91 E HSP^,) = E(3îp) = EJ9LJ. Since

EL(9t) c EL(9L,) and 9L, is locally equationally complete, EL(5t) = E^ft,).

Corollary 4.3. For any p-ring 9Î, EL(9Î) = E(9t).

Proof. El(9î) ç E(9t) by Theorem 2.1. 9Î E EiSR,,) by Theorem 2.3 so that

E<9t) C EX9LJ. Hence EL(3t) Ç E(SR) Ç E^Dt,,) = EL(9L,).

But EL(9íp) is an atom by Lemma 4.2, hence EL(9x) - EJ9L,).

The following three are analogous to the above.

Lemma 4.4. The ring 3% « locally equationally complete for any prime

number p > 1.

Lemma 4.5. Every nontrivial p-zero-ring is locally equationally complete.

Lemma 4.6. For every p-zero-ring 3t, EL(9r) = E(iR).

Lemma 4.7. Every locally equationally complete ring is either a p-ring or a

p-zero-ring.

Proof. Let the ring 9Î be locally equationally complete. By Theorem 2.4 9î

has a subring which is homomorphic, for some prime number p > 1, either to

Dr, or 39ip. By Lemma 4.1 (Lemma 4.4), EL(¡ñp) = EL(9t) and 91 E EL(9LJ

(E£(39y = ELm and 9r E EL(39l,)).
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But among the identities of any subset of ÏRp (33tp) are pa = 0 and ap = a

(pa = 0 = a • b). Hence DÎ is either a/>-ring or a/?-zero-ring.

5. Locally equational completeness of semigroups. Let AS be the class of all

semigroups.

1. SL is the class of all semilattices, that is all algebras in AS where

x + v = y + x and x + x = x hold.

2. LF is the class of all left algebras, that is all algebras in AS where

x + y = x holds.

3. RG is the class of all right algebras, that is all algebras in AS where

y + x = x holds.

4. CS is the class of all constant algebras, all algebras in AS where

x + y = z + w holds.

5. If p > 2 is a prime, then the class p-GR of /^-groups is all algebras in AS

for which both x + y = v + x and/»* + y = y hold.

Let CM = {SL, LF, RG, CS,p-GR}.

For K G CM, ß{K) is the characteristic algebra defined as follows:

1. ß(SL) = <{0, 1}, +SL) where +SL is defined by

+ SL

0
1

0     1

0
1

2. ß(LF) = <{0, 1), +iF> where + LF is defined by

0     1

0
1

0
1

3. G(RG) = <{0, 1}, +RG} where + RG is defined by

0     1RG

0
1

0
0

4. G(CS) = <{0, 1), +cs> where +cs is defined by

cs 0     1

0
0

5. If p is a prime then G(p-GR) = <{0, 1,. . .

+p-gr istne operation of addition mod/7.

Theorem 5.1   [5]. If K G CM then E(6(K)) = K.

>P - O- +p-GÄ>  where

Theorem  5.2  [5].  If K G CM and %GK s\A\>2,  then   ß(K)  is
isomorphic to a subalgebra of 91.

Theorem 5.3 [5]. //9t G AS 3 \A\ > 2, then for some K G CM, ß(K) is a

homomorphic image of a subalgebra of 91.
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Theorem 5.4. // 21 is a semigroup and is locally equationally complete then

there exists K £ CM such that 2Í E K.

Proof. By Theorem 5.3, for some K E CM Q(K) is an element of E¿(2Í).

But \ß(K)\ < oo, EL(G(K)) = E(G(K)) and E(6(AT)) = K. Hence EJ21) =
K and 21 E K.

Theorem 5.5. All classes in CM are locally equationally complete.

Proof. Assume K E CM is not locally equationally complete and let

K' G K where K' contains an algebra 2t 3 \A\ > 1. Since 2Í E K' c K, 21 E

K and G(K) E E¿(21) by Theorem 5.2. But EL(K) = EL(e(K)) C EL(2I) Ç

EL{K') so that EL(K) C EL(K') and K is indeed locally equationally com-

plete.

Theorem 5.6. If K' is a locally equationally complete class of semigroups then

K' is an element of CM.

Proof. Let 21 E K' where \A\ > 1. Since K' is an atom, 21 is locally

equationally complete so by Theorem 5.4 there exists K £ CM 3 21 E K.

But K is an atom by Theorem 5.5 so that K = EL(2I) = K' and K' E CM.
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