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ON THE FIRST COUNTABILITY OF HYPERSPACES

TAKEMI MIZOKAMI

Abstract. In this paper, the heredity of first countabUity of a space X on

the hyperspace 6(X) of nonempty compact subsets of X with the finite

topology is investigated and some variations are given.

Introduction and terminology. In [4] Smithson gives an example which

shows that the hyperspace Q(X) of nonempty compact subsets of a first

countable space X need not be first countable with respect to the finite

topology in the sense of [2], and he proves that a necessary and sufficient

condition for the first countability of G(X) is that X is compactly second

countable. The author, in Theorem 3, states the characterization of such

spaces, answering question 3 in [4]. In Theorem 1, the characterization of

open images of locally compact metric spaces is given. Theorems 2, 4 and 5

give some variations to such spaces. All spaces in the sequel are assumed to

be Hausdorff, and all mappings are continuous. N always denotes the set of

positive integers.

Before stating results, we give some notation and terminology used here.

We define the properties of a space X by (M), (C), (S), (SC) and (G) as

follows: (M): Every compact subspace of X is metrizable. (C): Every compact

subset of X is of countable character in the sense of [5], i.e., every compact

subset K of X has an open collection { U„ : n E N} with K c Un for every n

such that if K c G with G open, then Un c G for some n. (S): Every

compact subset of X is separable. (SC): Every compact subspace of X is

second countable. (G): Every compact subset K of X has a countable open

collection 9 (K) covering K such that if p, q E K are distinct, then p E P,

q & P for some P E <éP (K). Note that the term compactly first countable in [4]

is nothing but (C). According to Michael and Nagami [2], a compact subset K

of a space X has a countable X-base for K if there exists a countable open

collection <$ (K) such that whenever p E G n K with G open, p E B c G

for some B E %(K). This is equivalent with the term compactly second

countable in [4]. A mapping /: X —> Y is said to be compact-covering if for

every compact set K of Y there exists a compact set L of X such that

f(L) = K.
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Lemma 1. Suppose f is an open mapping from a space T onto a space X. If T

is a locally compact metrizable space, then the mapping /*: 6(7") —> <2(A"),

defined by f(K) = fiK)for every K E G(T), [2] ii onto and open.

Proof. Firstly, we shall prove the following: If K c fiU) with K compact

in X and U open in T, then there exists a compact set L c U with/(L) = K.

This implies that/is compact-covering. To see this, take a point piy) E U n

/" ' iy) for each>> G K. Since T is locally compact and regular, there exists a

compact nbd (= neighborhood) V(p(Y)) of piy) such that V(p(y)) E U.f

open implies that fiV{p{y))) is a nbd of y in X. Since K is compact, there

exists a finite subset K0 of K such that

Kc u{f(V(piy))):yEK0) c/(i/).

Put V = U { V(p(y)): y G K0}. Then V is compact. Put L = /_l(tf) n F.

Then L is a compact set with the desired property. Now we shall show that/*

is open. To see this, it suffices to prove that /*«!/,, . . . , £/„>) is open in

G(X) for all open sets £/,.U„ of F. Let K 6 <i/„ ..., t/„>; then we

show that/(7C) G In«;/*« t/„ . . . , Un})). K G <l/„ .. ., £/„> means/(TC) G

</(£/,), . . . ,/({/„)> open in G (A-). Let L be any element of

</([/,),. .. ,/([/„)>, that is, Lc/(U t/,) and L n /({/,-) * 0 for each/. By

that above statement, there exists a compact set M c U Uj with /(A/) = L.

Take x, G /"'(£) n Up and put M' = M u {*// - 1,..., »}. Then AT is

compact and A/' G <{/,, . . ., £/„>, and/(A/') = L, proving that/* is open.

Since / is compact-covering,/1" is onto. By (5.10.1) in [1],/* is continuous.

Thus we complete the proof.

Corollary. Any open mapping from a locally compact regular space is

compact- covering.

Lemma 2 (Ponomarev [3]). A space S is first countable iff S is an open image

of a metric space.

Theorem 1. For a space X the following are equivalent:

(1.1) A" « a first countable, locally compact regular space with (M).

(1.2) There exists an open compact-covering mapping f from a locally compact

metrizable space T onto X.

(1.3) There exists an open mapping f from a locally compact metrizable space

T onto X.

(1.4) GiX) is an open image of a locally compact space.

(1.5) GiX) is a first countable, locally compact regular space with (M).

Proof. (1.1) —> (1.2): Suppose X is a first countable regular space with (M).

Let K be any nonempty compact subset of X. Then there exists an open set

V(K) containing K such that V(K) is compact. Let ( F(A"J} be the totality

of such open sets for all compact subsets of X. Let T be the topological

disjoint sum of all V(Ka) with the relative topology, and define a mapping/

from T onto A" by a natural way. Obviously / is compact-covering and
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continuous. Since X is regular, T is locally compact and metrizable. To see

that/ is open, let G be any open set in T,p E G and f(p) = y. Then there

exists V(Ka) with/7 E V(Ka). Let {V„(p)} be a local base of p in X. Since

F/tfJ is open in X, there exists F„(/?) such that Vn(p) c G n K(/0,

implying K„(/>) cf(G). Hence/(G) is open, completing the proof of (1.1)-»

(1.2). (1.2)-»(1.3) is trivial. (1.3)-»(1.4): Suppose we are given/: T^X

satisfying the conditions stated in (1.3). Define a mapping/*: G(T)-> &(X)

oyf*(K) = f(K) for every K E G(T). Note that (3(7") is a locally compact

metrizable space by (4.9.12) and (4.9.13) in [1]. By Lemma \,f* is open and

onto. This implies the truth of (1.3) -> (1.4). (1.4) -»(1.5) is due to Lemma 2

and the Corollary to Lemma 1. (1.5)-»(1.1): By (4.9.12) and (4.9.13) X is a

first countable, locally compact regular space. Let K be any nonempty

compact set of X. Then K = {{x}: x E K} is compact in Q(X), and is

homeomorphic to K. Since K is metrizable, so is K. Thus X has (M).

This theorem gives a characterization of spaces that are open images of

locally compact metric spaces. The content is forseeable in the light of the

later results of this paper, but the proof is somewhat different.

Theorem 2. For a space X the following are equivalent:

(2.1) X is a first countable space with (M) and (C).

(2.2) X is a space with (M) and (C).

(2.3) X isa space with (C) and (SC).

(2.4) X is a space with (C) and (G).

(2.5) X is an open compact-covering image of a metric space.

(2.6) Every compact subset of X has a countable X-base.

Proof. (2.1)?* (2.2) *± (2.3) are trivial. (2.2) *± (2.5) is Theorem 1.2 in [2],

and (2.2) ?± (2.6) is Lemma 3.1 in [2]. (2.4) ̂ (2.2) is obvious if we note that

every compact subspace with (G) is metrizable. (2.6) -* (2.4) is trivial.

Theorem 3. For a space X the following are equivalent:

(3.1) Q(X) is first countable.

(3.2) X isa space with (C) and (S).

Proof. (3.1)^(3.2): It follows from Theorem 2 in [4] that X has (S).

Therefore it remains to prove that X has (C). Let K be any nonempty

compact set of X. Let {%: n E N) be a local base of K in Q(X); without

loss of generality we can denote each %n by <£/„„ . . . , Unky where each UnJ

is open in X. Put Vn = U {UnJ:j = 1, .. ., k„}. Then V„ is an open set

containing à:. Let G be any open set containing K. Then K c <G> in Q(X).

Therefore %n C <G> for some n. It is obvious that Vn c G. Thus K is of

countable character. (3.2)-* (3.1): Let K E 6(X). Then by (S) there exists a

countable dense subset {xm: m E 91} of K. Since X is first countable, there

exists for each m a local base ( V„(xm): n E N) of xm in X. K is of countable

character, and therefore there exists a countable open nbd base {U¡: i E N]

of K in X. Put T = {Vn(xm): n,mEN). Let {%: i E N) be the totality of
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finite subcollections of "V; then put for each /,/ EN, %iUj) = {K G

G(A): K E Uj and K n V=£0 for every V E %}. Then %(Uj) is an open

set in 6(A) containing K. We shall show that {%(Uj): i,j G A/} is a local

base of K in G (A). Suppose K E < Wx, ... , Wm), where each Wi is open in

9C. K c UrV; implies that K o Uj c U W¡ for some/. Since AT n W^Q,

there exists a point xm(() and an integer kit) such that Vk{f)(xm{f)) c W^-. Then

{ vk(iy i = I, ■ ■ ■ , m) = % tor some / G V. It is easily seen that K E %(Uj)

c <wx,..., wmy.
Theorem 3 answers question 3 proposed by Smithson in [4].

In the next lemma, a space A is said to have a G8-diagonal if the diagonal

set of A x A" is a Gs-set, and this is equivalent with the existence of a

sequence {%.„: n E N] of open covers of X with fl Sip, %„) = {p) for

every point p G A". If a space A has a sequence {%„: n E N) ot open covers

of X with D Sip, %■„) = {p} for every point p G X, then A is said to have a

Gs-diagonal.

Lemma 3. If X has a Gs-diagonal, then C(A) has a Gs-diagonal.

Proof. Let {%„: n E N) be a sequence of open covers of A" such that

fl Sip, °lin) = {p} for every point p E X. Construct <%„> =

{<!/„ . . ., t/m>: t/„ . . . , Í7m G %„, m = 1, 2, . . . }. Then (%} is an open

cover of G(A). Let Kx, K2 be distinct points in G(A). Then there exists a

point p E Kx - K2 without loss of generality. This means Sip, %„) n K2 =

0 for some n. For this n, suppose A',, K2 E < Ux, . . . , Um) for {/,,..., Um G

%„. p G AT, implies p G c/ for some /. On the other hand,

K2 E (Ux, . . . , Um) implies K2 n c/ ^= 0. This is a contradiction to

S(p, %) D K2 = 0. Hence we have Kx G S(/:2, <%„».

Theorem 4. 7/a space X has a Gs-diagonal and property (C), //k?« G (A") ¿s a

first countable space with a Gs-diagonal.

Proof. Note that every compact space with a Gs-diagonal is metrizable,

and necessarily separable. This combined with Theorem 3 and Lemma 3

implies Theorem 4.

The following theorem is a variation, to the case of point-countable base.

The proof is analogous to the preceding case, or routine, and is omitted.

Theorem 5. For a space X the following are equivalent:

(5.1) G(A) has a point-countable base.

(5.2) X has a point-countable base.

(5.3) There exists an open collection 9 such that for each compact set K of X,

9(K) = {P E 9 : K n P ¥* 0} is a countable X-base for K in X.

(5.4) There exists an open s-mapping from a metric space onto X.

For the definition of an s-mapping and the equivalence of (5.4) with (5.2),

see [2].
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