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STRONGLY ANNULAR FUNCTIONS

WITH SMALL COEFFICIENTS,

AND RELATED RESULTS

D. D. BONAR, F. W. CARROLL1 AND PAUL ERDÖS

Abstract. A technique of Bagemihl and Seidel is applied to two problems

in annular functions. It is shown that there exists a strongly annular

function with Maclaurin coefficients tending to zero, and that there exist

annular functions that are far from being strongly annular.

0. Introduction. We show that there is a function

(0.1) f(z) = 2  avz\       \z\ < 1,

such that

(0.2) lim  av = 0
p->oo

and

(0.3) sup     min |/(z)| = oo.
0<r<l    \A = r

A function/, holomorphic in the unit disk D (briefly,/ G %(D)), is said to

be strongly annular if (0.3) holds; an/in %(D) is annular if

(0.4) lim   min{|/(z)|: z G Jn } = oo

for some sequence of Jordan curves Jn in D with 0 in their interiors. An

example of an annular function for which (0.2) holds was known previously

[4, p. 100], [2, p. 21].
While it is known that not every annular function is strongly annular [3],

one might speculate that every annular function enjoys some of the special

properties of the strongly annular functions. For example, given an annular

function/, can the {/„} satisfying (0.4) always be chosen so that the sequence

of lengths l(Jn) remains bounded? Can the {Jn} be chosen so that the ratio of

the distances to |z| = 1 from the closest and farthest points of Jn is bounded

away from zero as n increases? In §2, we construct a counterexample to these

conjectures.

Both constructions make use of a technique of Bagemihl and Seidel [1, pp.

188-190].
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1. Strongly annular functions with small Maclaurin coefficients. Let H(D)

be provided with the topology of uniform convergence on compact subsets of

D. We use the methods of [1] to obtain the following lemma.

Lemma. Let % be a family of functions holomorphic in the closed unit disk.

Suppose that, given any number M > 0 and any neighborhood 91 of 0 in

H(D), there is a function g in 93 n 91 such that \g(z)\ > M on \z\ = 1. Then

there is a sequence {/.} in 93 such that the function

00

o-i) /(*)= 2/*(*)>    kl<i,*=i
is strongly annular.

Proof. Choose /, in 93 so that \fx(z)\ > 1 for |z| = 1, then choose r„

0 < rx < 1, so close to 1 that the inequality holds on |z| = rx. Next, choose/2

in 93, so that: (i) |/2(z)| < 2"2 in |z| < r, and |/,(z) + /2(z)| > 1 on |z| = rx,

and (ii) |/2(z)| > 2 + |/,(z)| on |z| = 1. Choose r2, rx < r2 < 1, so that the

last inequality continues to hold on |z| = r2. Continue choosing the functions

fk and the numbers rk, inductively, in the obvious way.

Theorem 1. There exists a strongly annular function (0.1) such that (0.2)

holds. More explicitly, f is of the form (1.1), each fk being a polynomial; the

coefficients are small and noninterfering:

0)    AW-2 «(*.')*'.
V

(1.2) (ii)      \a(k, p)\ < l/k,

(iii)    a(k, v)a(j, v) = 0   for v =■ 0, 1, ..., whenever/ ¥= k.

Let 8 be the operator on the set of nonconstant complex polynomials

defined by

(1.3) (8P)(z) = P(z)P(zd+l),   d = degree of P,

and let 5^ = 8(8p~l), p = 2, 3 . . . . We consider the particular polynomial

Q (z) = 1 — z + z2 + z3 + z4. One may verify that we have

\Q(eie)f= 5 + 2 cos 29 + 2 cos 49 = -^- + 4(cos 29 + \f,

so that the minimum modulus of Q(z) on |z| = 1 is jti = VÎT /2 = 1.66. It is

clear from (1.3) that the coefficients of 8PQ are ±1, and that its minimum

modulus on |z| = 1 is at least exp(2/' log u).

Definition. 93, is the sequence of polynomials

gp(z)=p-'z^8"Q(z),      p = \,2,...,

where m(Y) = 0 and m(p + 1) is one greater than the degree of g .

Proof of Theorem 1. Clearly the gp have small, noninterfering coefficients

in the sense of (1.2). For |z| < r, we have

\gp(z)\ < rm^p-\l-ry\
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while on |z| = 1, we have

\gp{z)\ >Jp-1exp(2MogJLt).

Hence, the sequence ®, satisfies the hypotheses of the Lemma, and we can

extract a subsequence fk = gp(k) such that (1.1) is strongly annular.

2. Functions far from strongly annular.

Theorem 2. There exists an annular function f with the following property: If

{Jn} is any sequence of Jordan curves about 0 in D for which (0.4) holds, then

l(J„) approaches infinity as n increases.

Proof. Choose 0 < rx < r2 < ■ • ■ < 1. For each n, form a closed Jordan

curve 7„ in D which coincides with |z| = rn in the left semidisk, while in the

right semidisk it is a perturbation of |z| = rn by a sinusoidal function of large

frequency and small amplitude. These are chosen so that l(In) is greater than

n and /„ lies in the interior of 7„+,. The set N(n, tn) of points of D that lie less

than e„ from 7„ is open, and we may choose e„ so small that for each Jordan

curve J about 0 that lies in N(n, e„), we have l(J) > n. We require further

that N(n, tn) n N(n + 1, e„+1) is empty.

For « = 1,2,..., we define a compact set Kn. It is the portion of the

region between 7„ and In + X that lies in the closed right semidisk and meets

neither N(n,tn) nor N(n + 1, e„+1). The set Kn does not disconnect the

plane.

Let /,(z) = 2 for all z. Suppose that, for some n > 1, we have found an

entire function /„ such that

|/„(z)| > j for all z on 7, and for/ = 1, . . . , n,

|/„(z)| < 1 for all z in Up,1 Ky

We then define an entire function tj„(z) that has small modulus on I„ (and

hence in In), approximates -/„(z) on Kn, and has large modulus on 7n+1;

such a function exists (cf. Remark 1). We choose the tolerances so that we

have

|/„(z) + t)„(z)| > j for all z on Ipj - 1,.. ., n + 1,

|/„(z) + t.„(z)| < lforzin U;_, Kp

and so that, if/„+1 =/„ + tj„, the sequence {/„} converges almost uniformly

in the unit disk. The limit function/is annular, and has modulus at most 1 on

U^. Hence, each sequence {/„} for which (0.4) holds meets only finitely

many of the K¡, so that the lengths /(/„) must grow without bound.

Remark 1. We add a few words about the existence of r/n. Take gn(z) = 0

on Jn and its interior and gn(z) = - fn(z) on Kn. By Runge's theorem, some

entire function hn approximates gn on these two sets. Let i/>„ be the continuous

extension of a conformai map of the interior of Jn+X onto |vv| < 1, and let M

be a number larger than n + 1 + max{|/„(z) + h„(z)\: \z\ < 1}. For k

sufficiently large, the function M\p* has modulus M on Jn+l but is small on

Jn u Kn. Approximate M\¡/¡¡ by an entire function <pn, and take Tjn = hn + <pn.

Remark 2. Instead of the sequence |z| = r„, one may use a sequence
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\z — an\ = rn, with r„ increasing to 1 and an decreasing to zero, so that the

circles do not intersect, and so that

..        ! - ('« + «-)       n
lim-;-r   = 0.

If the £„ are taken small enough, the construction will give a function / that is

far from strongly annular in an additional sense. That is, for each sequence

{J„} for which (0.4) holds, the ratio of the distances to |z| = 1 from the

closest point of Jn and from the farthest point approaches zero.
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