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THE BANACH-STONE PROPERTY

AND THE WEAK BANACH-STONE PROPERTY

IN THREE-DIMENSIONAL SPACES

MICHAEL CAMBERN

Abstract. Let X and Y be compact Hausdorff spaces, E a Banach space,

and C(X, E) the space of continuous functions on X to E. E has the weak

Banach-Stone property if, whenever C(X, E) and C(Y, E) are isometric,

then X and Y are homeomorphic. E has the Banach-Stone property if the

descriptive as well as the topological conclusions of the Banach-Stone

theorem for scalar functions remain valid in the case of isometries of

C(X, E) onto C(Y, E). These two properties were first studied by M.

Jerison, and it we later shown that every space E found by Jerison to have

the weak Banach-Stone property actually has the Banach-Stone property,

thus raising the question of whether the two properties are distinct. Here we

characterize all three-dimensional spaces with the weak Banach-Stone

property, and, in so doing, show the properties to be distinct.

Throughout this article X and Y will denote compact Hausdorff spaces, E

a Banach space, and C(X, E) the space of continuous functions on X to E.

©(£) will denote the space of bounded operators on E, given its strong

operator topology, and C(X) the space of continuous functions on X to the

scalar field associated with E.

We will say that E has the Banach-Stone property if, given any isometry A

of C(X, E) onto C(Y, E), there exists a homeomorphism t of Y onto X and

a continuous function^ —> &y from Y into %(E) such that, for all^ E Y, @y

is an isometry of E onto itself, and such that (A(F))(y) = SyF(r(y)) for

F E C(X, E), y E Y-i.e. if the Banach-Stone theorem for C(X) can be

completely generalized for C(X, E). E has the weak Banach-Stone property if

the existence of an isometry A of C(X, E) onto C(Y, E) implies that X and

Y are homeomorphic.

The Banach-Stone and weak Banach-Stone properties were first studied in

[4] by M. Jerison, who showed that every E belonging to the family of strictly

convex spaces has the former property, and that all spaces E belonging to a

larger family have the latter. The weak Banach-Stone property has also been

investigated by K. Sundaresan, who showed in [6] that for every positive

integer « > 2, the space /n°° fails to have the weak Banach-Stone property.

In [1] a complete characterization of all finite-dimensional Banach spaces
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with the Banach-Stone property was obtained, and in [2] that same charac-

terization was shown to hold within the family of reflexive Banach spaces. We

say that a Banach space E splits if E can be written as the direct sum of two

nonzero subspaces U and V, E = U © V, and has norm given by ||e|| =

max{||«||, ||u||} for e = u + v E E. The characterization obtained in [1] and

[2] is that if £ is a reflexive Banach space, then E has the Banach-Stone

property if, and only if, E does not split [1, Theorems 1 and 2] and [2,

Theorem].

It has also been established, [1, p. 92 and Theorem 2, p. 97], that every

Banach space E shown by Jerison in [4] to have the weak Banach-Stone

property actually has the Banach-Stone property. Thus the question arises

whether or not the two properties are indeed distinct. If E is two dimensional,

then it is trivially true that E splits if, and only if, E is isometric to l2, so that

by the results of [1] and [6] the properties do coincide for two-dimensional

Banach spaces E.

In this article we characterize all three-dimensional spaces with the weak

Banach-Stone property. It is shown that the only real (resp. complex) three-

dimensional Banach space which fails to have the weak Banach-Stone

property is the real (resp. complex) space l3°°. Now it is easy to find

three-dimensional spaces which split, and yet are not isometric to l3°°. (For

example, let U be a two-dimensional Hilbert space, let V be the correspon-

ding scalar field, and form E = U © V giving E the max norm.) Since such

spaces have the weak Banach-Stone property, but not the Banach-Stone

property, it is a consequence of the result obtained here that the two

properties are distinct.

In this article we make use of the concept of a T-set as introduced by S. B.

Myers in [5]. If E is any Banach space, a subset T of E is called a T-set if,

whenever {ex, . . . , e„) is any finite subset of T, then ||S"=)e,|| = 2"=.||e)||,

and T is maximal with respect to this property. We also use I. Singer's

characterization of C(X, £)* as the Banach space of all regular Borel vector

measures m on X to E*, with finite variation |m|, and norm given by

11m¡| = ImKA'), see [3, p. 387]. For x E X, ¡xx will denote the scalar measure

which is the positive unit mass concentrated at x, and we note for future

reference that if <p G E*, then <p • ¡xx E C(X, E)*.

Elements of E will be denoted by e, u and v and those of E* by tp and \p.

The value of tp at e is denoted by <e, tp>. If E = U © V, and if we write an

element e E E as e = u + v, it is always implicit that u E U and v G V. We

denote elements of C(X, E) and those of C(Y, E), respectively, by F and G,

while elements of C(X) and C(Y) are denoted, respectively, by/and g. The

norms in E and E* will be denoted by || • ||, while norms in C(X, E),

C(Y, E),C(X) and C(Y) are denoted by || • H^.

If E =£ {0} is a Banach space, and T is a T-set in E, then there exists an

element tp G E* with ||m|| = 1 such that <e, <p> = ||e|| for e G T, [1, Propo-

sition 1]. Let 9 = {<p G E*: ||<p|| = 1 and <e, <p> = ||e|| for all e belonging to
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some T-set T Q E). If E is finite dimensional, then by a T-basis for E* we

mean a basis consisting of elements of 5F. Such bases always exist, [1,

Proposition 2]. The following lemma is easily established.

Lemma 1. Let E be a Banach space that splits, E = U © V. Then U* is

isometrically isomorphic to V , the annihilator of V in E*, under the map which

sends an element <p E U* to that element <p' E Vo C E* defined by <e, tp'> =

<h, tp>, for e = u + v E E.

Henceforth, we will cease to distinguish, in notation, between an element of

U* and its image under the isometry of the lemma. The same symbol <p may

denote both an element of U* and its image in Vo under the above

correspondence.

Lemma 2. Let E be a Banach space that splits, E = U © V. Then given a

T-set T in U, the set T = {u + v E E: u E T and v is an element of V with

\\v\\ < \\u\\} isa T-set in E.

Proof. One readily verifies that norm is an additive function on finite

subsets of T. We show that T is maximal in E with respect to this property.

If T were not maximal, there would exist an element e0 = u0 + v0 E E -

T such that ||e0 + e\\ = \\e0\\ + ||e|| for all e E T. Since e0 E T, either (i)

K||> K||,or(ii)K|| < K||butMo£ T.
If (i) holds, choose u E T such that ||w|| = \\v0\\ - \\uQ\\. (This is possible,

since T is a cone, [5, Lemma 2.1, p. 133].) Then u E T and ||e0 + u\\ = \\v0\\

< \\vo\\ + IMI = INI + llMll' contradicting the fact that e0 must add in norm

with every element of T.

If (ii) holds, again by [5, Lemma 2.1] there exists an element u E T such

that ||«o + u|| < ||u0|| + ||u||. Then u E T. We have

INI + HI = INI + H>IK + "||
and

INI + HI = INI+ HI > INI + HI >INI>

so that ||e0 + u|| = max{||i/0 + u||, ||t>0||} < ||e0|| + ll"ll> and we again reach

a contradiction. The proof of the lemma is thus complete.

As an immediate consequence of Lemmas 1 and 2 we have the following:

Lemma 3. Iftp E U*, ||m|| = 1, and (u, <p> = ||w|| for all u belonging to some

T-set T C U, then considered as an element of Vo Ç E*, (e, tp) = ||e|| for all e

belonging to some T-set TÇ£,

Lemma 4. Let E be a three-dimensional Banach space that splits, E = U ©

V, where U is two dimensional. Suppose that U does not split, and let {<p,, <p2}

be a T-basis for U* = Vo C E*. If A is an isometry of C(X, E) onto C(Y,E)

then for each x E X we have
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where the <p/ are elements of E* with ||<p,'|| = 1, and y is an element of Y which

depends only on x.

Proof. By Lemma 3 and [1, Lemma 2, p. 94], for each x E X and / = 1, 2,

A*~\(pj ■ ¡xx) is of the form <p,' • /y, where ||<p;|| = 1. We want to show that for

fixed x we have.y, = y2.

Suppose, to the contrary, that for some x E X, we have y, =£ y2. Then since

U does not split, and {<p,, <p2} is a basis for (/*, by [1, Lemma 1, p. 93] there

exists a T-set T in U and a tp G U* = Vo with ||<p|| = 1, such that (u, <p> =

|«|| for all u E T, and such that both of the sets {tp, tp,} and {<p, <p2} are

linearly independent.

By Lemma 3, {e, tp> = ||e|| for all e belonging to some T-set T in E, so that

by [1, Lemma 2], A*(y ■ ¡xx) is of the form tp'• j^ for some <p' G E* with

||<p'|| = 1, and some y E Y. Let / be the subset of {1, 2} such that for i G /,

the support of A*~l(cp¡ • fxx) is equal to y. Then / is either empty or a set

containing one element.

We wish to show that (tp', <p,': i E 1} is a linearly independent subset of

£*. This is trivially true if I = 0, so suppose that / is a singleton, I = {i0},

and suppose that there exists a scalar X such that <p' = Xtp/. Then

f' • /V - À$0 • My - 0

in C(Y, £)*, and hence

A*(<P'     ■    ¡ly      -     X<P'¡0   ■    fly)      =      C    •    Hx      -     A(P,0   •    ¡Xx      =     U

in CÍA', £)*. Thus (p = Xq>io in £*, contradicting the fact that (<p, <p, } is a

linearly independent set. Hence {<p', <p,': / G /} is linearly independent as

claimed.

Thus we can take a vector e E E such that <e, <p,'> = 0, /' G 7, but <e, <p'>

=^ 0. Let g be any element of C( Y) with g(>>) ̂  0, and such that the support

of g is disjoint from the support (or supports) of A * ' '(<p, • \xx) for i g /, and

define G G C(Y, E) by G(y') = g(/)-e\ y' E Y. Since <p G U* and

(tp,, <p2} is a basis for £/*, there exist scalars A, such that tp + A.tp, + A2tp2 =

0. Thus q>- ¡xx + A.m, - ¡xx + A2tp2 • ̂  = 0 in CÍA1, E)*, and so

0=//í~1(G)^(<í'-Mx + Ai<Pi-^ + ^2-^)

= JGd{A*-\tp¡xx + Xx<px-¡xx + X2<p2-ixx))

= ¡Gd(q>'tíy) + ^\¡Gd{tf¡-^)

= (G(y),<p') + 21Xi(G(y),<P;)
iei

= g(y)(e, <p'> =h 0.

This contradiction completes the proof of the lemma.

Theorem. Let E be a three-dimensional Banach space. Then E fails to have
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the weak Banach-Stone property if, and only if, E is isometric to l3°°.

Proof. The "if" part of the theorem has been established by Sundaresan,

[6, p. 22]. Hence we assume that E is not isometric to l3°° and show that E has

the weak Banach-Stone property.

If E does not split, then E has the Banach-Stone property, and we are

done. Thus suppose that E splits, E = U © V, where U is two dimensional

and V is one dimensional. Now U cannot split, for otherwise E would be

isometric to /3°°, contrary to the hypothesis.

Let A be an isometry of C(X, E) onto C(Y, E), and let {tp,, <p2) be a

7-basis for U* = Vo C E*. Then for x E X, define t(x) = y if the supports

of A*~x((fj ■ nx) are equal to_y, for /' = 1, 2. By Lemma 4, t is a well-defined

function from X to Y.

We wish to show, first of all, that t is one-one. Suppose, to the contrary,

that xx, x2 are distinct points of X, but that t(xx) = t(x2) = y. This would

mean that A*~x(<p¡ ■ ¡xx) is of the form tp^ • ¡iy for /' = 1,2 and/ =1,2. Since

E* is three dimensional, (tr^: / = 1, 2 and/ = 1, 2} is a linearly dependent

set, so that there exist scalars Oy, not all zero, such that 2, ,e{1 ^a,-,^ = 0.

Then Syg^^}^ • Py = 0 in C(7, £)*, so that

A * S *U% • rV J   = 2 «(,-<& • ft»  = °
V/je {1,2} /     U€{1,2}

in CÍA', £)*. We may suppose, without loss of generality, that au ^ 0. Since

<p, and <p2 are linearly independent, there exists an e E E with <e, <p2> = 0 ^

<e, <p,>. Take/ E C(X) with/(x2) = 0 ^ /(*,), and define F E C(X, E) by

F(x') = f(x') ■ e, for x' E X. We would then have

0 = /></(      2      a^-^J
\Ue{i,2} /

= a11<F(jc1), <p,> + a21<F(x,), <p2> + 0

= an/(^i)<e. <Pi> ̂ 0>

which is absurd. Thus t is one-one, as claimed.

We next show that t maps X onto y. As above, we assume the contrary is

true, and arrive at a contradiction. Suppose that^, E Y - t{X). By Lemma

4 and [1, Lemma 2], with A* replacing A*~], we would have A*(tpj • jUy ) is of

the form ^ • ¡j.x, j = 1, 2, for some point x E X dependent on yx. Now

t(x) = y2, where by our assumption, y2 cannot be equal to yx. This means

that A*~x(tp¡ ■ ¡ix) = <f'¡ ■ ¡jy , i' = 1,2, where the tp,' are elements of norm one

in E*. Since {tp,, <p2, \px, ̂ 2} is a linearly dependent set in E*, there are scalars

À,, ctj, not all zero, such that 2,-,y-en 2}\<P/ + «,•>/) = 0, and thus

<Ve{l,2}

in C(X, E)*. Hence
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A*    M 2        \<rVM, + «7*7 "M
V»,7S{l,-2} /

= A,(p'i • /xV2 + A2<p2 • ./iV2  + ax(px ■ ¡xy¡ + a2<p2 ■ ¡xy¡ = 0

in C(Y, E)*. If we note that since cp, • /xx and rjp2 • ¡xx are linearly independent

elements of C(X, E)*, <pj • ¡u^ and tp2 • /x^ are linearly independent in

C(Y, E)*, and thus tp', and tp2 are linearly independent in E*, a construction

exactly analogous to that of the preceding paragraph then yields an element

G G C(Y, E) such that

JGd(XX(p'X   ■   ̂    +   X2(f'2  ■   \iy2   +    aX(fX   ■   i>yx    +    O^j ■   ̂    )   =¿   0.

This contradiction thus establishes that t is onto.

Finally, we show that t is continuous. Suppose, to the contrary, that there

exists a net {xß: ß E B) in X such that xß —> x0, but that_y» = r(xß) ^4 t(x0)

= y0. Then there is a compact neighborhood N of y0 such that for every

ß0 E B, there is a /? > ß0 such that^ lies outside N. Now by [1, Lemma 2]

and by the definition of t, A*~l(<px ■ ¡xxJ = <p10- fiy for some tp10 G E* with

||<p, o|| = 1. Fix e0 E E with ||e0|| = 1, such that <e0, <p10> = 1. Choose g0 G

C( K) with 1 = Hgolloo = go(yo)> and such that the support of g0 is contained

in N. Then define G0 G C(Y, E) by G0(y) = g0(y) ■ e0, for y G Y. We have

({A-l(G0))(x0),<px) = fA~l(G0)d(<px- ixXo)

= fG0d(A*-\cpx- ¡xXo)) = JG0d(<pxfi- vyj

= (Go^o), <Pi,o> = Oo> <Pi.o> = L

Now since x^ -> x0 and ((A ~'(G0))(x), <p,> is a continuous function of

x G A', there exists a ß0 E B such that if ß > ß0 then

Re((A~\G0))(xß), œ,> > i. Thus fix a ß > ß0 such that yB = t^) lies

outside A'. Again we have A*'l(tpx • ¡xx ) = cpxß • ¡Uj,, for some <pXß G £* with

||(p1/3|| = 1. Choose an eB E E with 11 e^11 = 1 such that (eß, <p1/3> = 1. Then

take an element gß of C(Y) with 1 = \\gß\\x = gß(yß), and such that the

support of gß is disjoint from N. Define Gß E C(Y, E) by Gß(y) = gß(y) •

eß, for y E Y. Now G0 and Gß both have norm one and they have disjoint

supports, so that ||G0 + Gß\\x = 1. However,

\\A-l(Go+Gß)\\x>\\(A-\G0))(xß) + (A-\Gß))(xß)\\

> Re[((/(-,(G0))(x/î),(p1) + ((¿"'(G, ))(*„), <,>,)"

>^ + ReJ^-'(C/3y((p1.N)

= \ + Re JGßd{A*-\<px ■ ¡xXß)) = I + Re JGßd(yXJt ■ ̂)

= I + Re<G(7/3), cp,,,)   = 1 + Re<e> 9lj8> = | ,
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which  contradicts  the  fact  that A   '  is  norm-preserving.  Hence t  is  a

continuous, one-one map of X onto Y, and is thus a homeomorphism.
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