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ON p-SPACES AND ¿¿-SPACES

J. L. BLASCO

Abstract. In this paper it is proved that when .¥/ is a kR-space then pX (the

smallest subspace of ßX containing X with the property that each of its

bounded closed subsets is compact) also is a /cÄ-space; an example is given

of a kR -space X such that its Hewitt realcompactification, vX, is not a

/cÄ-space. We show with an example that there is a non-/cÄ-space X such

that vX and pX are kR-spaces. Also we answer negatively a question posed

by Buchwalter: Is pX the union of the closures in vX of the bounded subsets

of A"? Finally, without using the continuum hypothesis, we give an example

of a locally compact space X of cardinality n, such that vX is not a /c-space.

Introduction. The topological spaces used here will always be completely

regular Hausdorff spaces. If X is a topological space we write C(X) for the

ring of the continuous real-valued functions on X, and ßX (resp. vX) for the

Stone-Cech compactification (resp. Hewitt realcompactification) of X. A

subset M of X is said to be bounded if g\M is bounded for all g E C(X). A

space is said to be a p-space if every closed bounded subset is compact.

Realcompact spaces (closed subspaces of a product of real lines) and P-

spaces (spaces in which every Gs is open) are p-spaces. Write pX for the

smallest subspace of ßX that contains X and is a p-space. A real-valued

function g on I is called kR-continuous if g\K is continuous in K for all

compact subsets K of X. A space such that every kR-continuous function is

continuous is called a /c^-space. The associated /<Ä-space of a space X,

denoted by kRX, will be X provided with the coarsest topology for which

every kR-continuous function on X is continuous. It is easy to see that kRX is

a completely regular Hausdorff space.

Our work provides the solutions to the following questions:

(1) If A' is a kR -space, is pX a kR -space?

(2) If ® is the family of all closed bounded subsets of X, does the relation

pX = \J{BvX: B E <ft}hold?

(3) If vX or pX is a kR-spact, is A" a kR-spa.cel

(4) If X is a kR-space, is vX a kR-space?

(5) If X is a realcompact space, is kRX realcompact?1
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The answer to question (1) is affirmative. Moreover, if A is a Ä:Ä-space, it is

proven that (J {BvX: B E <$ } is also, and that using this fact one has shown

that /iA is a kR-space. Question (2) has a negative answer; the example is

given of a locally compact space A such that X ¥= U {BvX: B G 'S } 7^ ¡uA.

Using an example of Comfort [3], it is shown that the answer to question (3)

is negative. Supposing continuum hypothesis (CH), an infinite class of kR-

spaces A is constructed such that vX is not a kR-space. Thus question (4) has

a negative answer. Further, it is shown that for the spaces A constructed

before, kR(vX) is not realcompact and therefore question (5) also has a

negative answer.

Nachbin [12] and Shirota [16] give the following characterizations for

CC(A) (the vector space C(A) provided with the compact-open topology):

(NS,) A is realcompact if and only if CC(A) is bornological.

(NS2) A is a u-space if and only if CC(A) is barrelled.

These characterizations provide examples of nonbornological barrelled

spaces, answering a question posed by Bourbaki [1]. Warner [18] characterizes

the &A-spaces as those spaces A for which CC(A) is complete (W).

Question 5 is related to the following problem posed by Dieudonné [4]: If

£ is a bornological space, is the completion of £ a bornological space? T.

Kömura and Y. Kömura [7], supposing (CH), give an example of a bornologi-

cal space whose completion is not bornological, using sequence spaces of

Köthe [8]. Since De Wilde and Schmets have proven [19] that A is realcom-

pact if and only if CC(A) is an ultrabornological space (inductive limit of

Banach spaces), the examples of realcompact spaces A such that kRX is not

realcompact provide ultrabornological spaces CC(A) such that the completion

is not a bornological space. Thus, our solution to question (5) is another

solution to the problem proposed by Dieudonné, in the context of spaces

Cf(A).

A space is said to be a £-space if each of its subsets which has closed

intersection with each compact subset is itself closed.Evidently each &-space

is a kR-space, but Pták presents [15] an example (credited to Katëtov) which

shows that the converse implication can fail. Another (completely regular

Hausdorff) example has been discovered by Noble [14]. In [3], Comfort gives

an example of a locally compact space A whose cardinality is N2 such that vX

is not a fc-space and asks himself if there exists a space of cardinality nx with

the same properties as the former one. In [13] Negrepontis, supposing (CH),

gives an example of a space with these properties. We give a different

example from the former one, this one without (CH).

Question 1. If A is a topological space, let ¡xX be the intersection of all

subspaces of ßX which contain A and are /t-spaces. Thus, ¡xX is a /x-space

such that A c /¿A <zvX. It can be easily shown that A is a ¡u,-space if and

only if A = jiiA, and that A is compact if and only if it is a pseudocompact

jit-space. The space ¡xX is unique in the following sense: If T is a it-space

which contains A as a dense subspace and every continuous mapping t from
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X into any p-space Y has a continuous extension f from T into Y, then there

exists a homeomorphism of pA onto T that leaves X pointwise fixed. Indeed,

let (¡> be a continuous mapping from A" into any p-space 7; then <f> has a Stone

extension <J> to the whole ßX into /8K If we prove that E = <¡>~X(Y) is a

p-space, then the restriction of <f> to pA is a continuous extension of <£ because

pA c £. If A is a bounded subset of E, then 5 =<¡>(A) is a compact subset

of Y and since <f>~'(.ß) is compact, the subset A is relatively compact in E.

Therefore every continuous mapping from X into any p-space Y has a

continuous extension from pX into Y, and according to [5, 0.12] the proof is

complete.

Proposition 1. Let X be a topological space, let ® be the family of all

bounded subsets of X, and let E(X)= U {BvX: B E %). If X is a kR-space,

then so is E(X).

Proof. If /is a kR -continuous function in E(X), and g is the restriction off

to X, then g E C(X). If h is the continuous extension of g to E(X) and

jtE£(í)~í, then x E ÂvX, A E %, since K = ÄvX = AE(X) is compact,

f(x) = h(x) and/ = h.

If a is an ordinal, we write W(a) for the set of all ordinals less than a. If M

is a set, we denote the cardinal of M by | M |.

Theorem I. If X is a kR-space, then so is pX.

Proof. If Na is a cardinal larger than 2l,rf|, let <oa be the first ordinal whose

cardinal is Ka. We define inductively {Ba: o E W(ua)), where Bx = E(X)

and B„ = E(\J {Bs: 8 < o}). Let us suppose that Bs is a A:Ä-space for every

8 < o, a E W(ua) and we shall prove that Ba is a /cÄ-space. By Proposition 1

it suffices to prove that W = (J {Bs: 8 < a) is a /cÄ-space. If / is a ^-con-

tinuous function in W, let g be the continuous extension to W of the

restriction of / to X. If x E fiÄ , c50 < a, since g and / are continuous in Bs

and coincide over X, it follows that/(x) = g(x) and therefore, g = f. Thus, /

is continuous in IP and so W is a kR -space. Let us now suppose that pX j= Ba

for every a E W(ua), and we choose a, E W(ua) such that |a,| > \pX\ (we

write |a,| for the cardinal number of ox). For every y < a, we choose a point

xy E By ~~ \J {Bs: 8 < y}. Therefore \Bn ~ X\> \ax\ because \ax\ = \{xy,

y E rV(ox)}\ and xy E B0] ~ X for all y < a,. On the other hand, the

relation |<t,| > \pX\ > \pX~X\ > \Ba ~ X\ holds, which is a contradic-

tion, so there exists a0 E W(ua) such that Ba = pX.

Question 2. First, we shall give an example of a locally compact space X

such that |A"| = K, and that vX is not a A>space. If a is an ordinal, we write

a + 1 for the ordinal which follows it and w0 (resp. w,) for the first infinite

(resp. uncountable) ordinal. Let Y be the product space W(ux + 1) X lV(u0

+ 1). If (a, to0) is a point of Y where a is a limit ordinal (a < w,), let { ß„}™= x

be a strictly increasing sequence in W(a) which converges to a. If y„ = /?„+I,

an = y„ + 1, n = 1,2, . . . ,   it follows that {a„}~=1 is a strictly increasing
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sequence which converges to a, an being an isolated point of W(wx). If p is a

positive integer we write Apa = {(8,p): ap < 8 < a) and U„a = {(a, w0)} u

{ U^°_„Apa}■ If a is a limit ordinal of W(ux) let/a be the function defined on

Y as fa(a, w0) = 0,fa(Ana) = (l/n}, n = 1,2, . . . , and, otherwise, as 1. Let

?F be the weak topology on Y associated to C(Y) and to the family of

functions {/„, a limit ordinal of W(ux)}. Then (Y,^) is a nonpseudocompact

completely regular space, because {(y„,n)}™=x is a copy of N (discrete space

of positive integers), which is C-embedded in Y. For the topology 9 a basis

of the neighborhoods of (17,a) E Y, when a < w0, is the family of the

neighborhoods of this point in the product topology. The same is true for

(«,,<%) and (r/,«0) when tj is a nonlimit ordinal of W(ux). If rj is a limit

ordinal of W(ux), a basis of the neighborhoods of (r/,w0) is the family {U :

n = 1,2, . . . }. If A = Y ~ {(cd,,(o0)}, let us see that A is locally compact. If r/

is a limit ordinal of W(ux) and [V¡,i G L} is an open cover of [/, there

exists n0 G N, i0 E L such that Un^ C V,o. If { V,,: 1 < j < K) is a finite

subcover of the compact set (J {Apr}: 1 < p < n0}, then {F, : 0 < / < A'} is

a finite subcover of Í/, . Now we shall prove that A is C-embedded in Y. If

/ G C(A), there exists y E W(ux) such that if ß > y, then f(ß,n) = /(w„n),

n = 1,2, .... By continuity, it results that f(ß, w0) = f(y, w0) if ß > y,

ß < w,. If/is the function that coincides on A with/and/(w,, co0) = f(y, u0)

it follows that / is a continuous extension of /. If we prove that Y is

realcompact, we shall have Y = vX. Let us suppose that M is a free real

maximal ideal of C(Y).2 Then M ¥= {/ G C(Y):f(ux, w0) = 0} and HZ(M)

= {Z(g): g E M] there will be Z1 G Z(M), o0 G W(ux) such that Z1 n

{(ß,u0): a0 + 1 < /? < w,} = 0. Since //, = {(a,n): 1 < a < w,} is a com-

pact zero-set, then Hn G Z(M). Thus there exists Z„ G Z(M) such that

Z„ n #„ = 0, n = 1,2,_Since M is real, if Z2 = rC=iz„> then Z2 G

Z(M) and, therefore, Z = Z1 n Z2 G Z(A/), Z c {(/?, co0): 1 < /? < a0},

and so Z = {(?#, Wo)}^=i> 1 < Ti < Y2 < ' ' ' < ao- Because {(yK, co0)} is a

zero-set in F, A" = 1,2, ... , and since M is real, there exists K0 E N such

that {(v^ ,w0)} G Z(M) and, therefore, A/ is not free. This contradiction

shows us that no free real maximal ideals in C(Y) exist, and that, therefore, Y

is realcompact. As the set {(o,w0): 1 < a < w,} meets the compact subsets of

Y in closed sets but is not closed, it results that Y is not a A>space.

We are now going to resolve negatively question (2) with an example. Let T

be the subspace Y ~ {(cox,n): 1 < n < w0}, which is locally compact, and we

shall prove that T -h U {BvT: B E % } =¿ juT, <ft being the family of all

closed bounded sets of T. Since T is C-embedded in  Y it follows that

Y =vT = vX and so uT c ¡iX. The equality A = U {BvT: B E % } is a

direct consequence of the following lemmas.

2We say that / is an ideal of C(X) if it is a subring of C(X) and if/ el,ge C(A") implies

g/" £ /. An ideal / of C(X) is said to be free when f] (Z(f): f e 1} = 0. A space X is

realcompact if for every free maximal ideal / of C(X), the residue class ring C(X)/I is not

isomorphic with the ring of the real numbers.
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Lemma 1. If A c T and {oK)x=x is a strictly increasing sequence in W(wx)

such that (aK, to0) E A, K = 1,2, ... , then A is not bounded in T.

Proof. If tj E ïV(ux) is not a limit ordinal we write B(K, nK) = {(tj,//):

nK < n < u0), and if it is a limit ordinal then B(K,nK) = U„kV. We define

inductively a neighborhood B(K,nK) of (oK, w0) satisfying B(K, nK) n Ux

= 0 where y = sup^a^ and for 1 < j < K - 1, B(j, nf) n B(K, nK) = 0,

nx < «2 < • • • < «jç. The function whose value is K in B (K, nK), K =

1,2, ... , and vanishes otherwise, is continuous in T and nonbounded in A.

Lemma 2. If A is a closed set in T and (w,, w0) E A Y, then A is not bounded

in T.

Proof.   Since   (w,, w0) E AY   it   is   possible   to   choose   a   sequence

{(■/*> 4)}/r-i in ^ such that nk < «*+i»7* < Y¿+.> Ä" = 1,2, .... With the

product topology this sequence converges to (a,, w0), where ax = sup^y^-. If

this sequence does not converge with the topology 'S to (a,, w0), then it is a

discrete closed set C-embedded in T contained in A. Therefore A is not

bounded in T and the lemma is proved. If the sequence converges to (a,, w0)

in the topology 5', we can consider a sequence {(y¿, «¿)}£=1 in y4 satisfying

wl < nl+i> yi+i > Y¿ > er,, Ä" = 1,2, . . . , and we shall proceed as before.

If forp = 1,2, . . . , the sequence {(y£, «£)}£= i converges to (o^, to0) with the

topology f, then (ap, u0) E A, op < ap+x, p = 1,2, . . . , and therefore, from

Lemma 1, the set A is not bounded in T.

Returning to our example, from Lemma 2 we deduce that X = U {BvT,B

E % } c pT, so that pX e pT and consequently pA = pT. Thus, X ^ pX

since the set {(«,, «): 1 < n < w0) is closed and bounded in X and noncom-

pact.

Note. Since Y = pX = uA', by Proposition 1 it results that y is a kR-space.

In [17] it is proved that kY3 is not a regular space.

This example provides a solution to problem 2 of Buchwalter [2].

Question 3. Now we give an example of a topological space X such that

pX = vX is a /(/j-space and A is not a /cÄ-space. Comfort [3] gives an example

of a pseudocompact space X whose cardinality is c such that N c A c /SA7.

Since every infinite closed set in ßN ~ N has cardinality 2C [5, 9.12], it

follows that the compact subsets of X are finite. But X is not discrete, so that

it is not a /ifl-space and pX = vX = ßA.

Question 4. Firstly, let us note that every quotient space of a /tÄ-space is a

/í/j-space. This result is intimately connected with the fact that kR is a

coreflector (see [6] or [10]). Thus, if a topological product is a kR -space then

each factor space also is.

A subset of a topological space X is said to be /c-closed if it intersects every

3If A- is a topological space, the associated fc-space to X, denoted by kX, will be X provided

with the topology for which a set is closed if and only if it intersects every compact set of X in a

closed set.
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compact subset of A in a closed set of A. Therefore, a &-space is a space in

which every A>closed subset is closed.

Proposition 2. // A is a ¡x-space and vX ~ A is k-closed in vX, then vX is

not a kR-space.

Proof. Since A is a ju-space C-embedded in vX, then A is /c-closed in uA.

Moreover vX ~ X is fc-closed in vX. Therefore, the function whose value is 0

on A and 1 on vX ~ A is ^-continuous but is not continuous in vX.

Theorem 2. Let {U¡}ieI be a family of clopen pairwise disjoint sets in

ßN ~ N and let X = N u { U ielU,}. If \vX ~ A| < 2C and the points of

vX — X are not adherent to any countable subset in X — N, then X is a locally

compact ¡x-space and vX is not a kR-space.

Proof. As ßX = ßN and A is open in ßX, it results that A is locally

compact. Let us see that A is a /t-space. Suppose that there is a noncompact

closed bounded subset A in A. Since vX is a ju-space it follows that K = A vX

is compact. If A intersects infinitely many U¡ we can choose a sequence

xn G A n Uj, n = 1,2, . . . , with in =£ im if n ¥= m, such that {x„}"=, has no

adherent points in N and A ~ N because U¡ is open in A ~ N for every i E I

and U¡ n Uj = 0, / i= j. Further, this sequence has no adherent points in

vX ~ A by hypothesis, and therefore K is not compact. Thus, there is a finite

sequence i,,/2, . . . , /„, i, G /, 1 < / < n, such that if /' =£ /,, 1 < / < n, then

/4 n U¡ = 0. Let I-F be a closed neighborhood of vX ~ A such that H7 n £/,

= 0, 1 < / < n. Then ^ n A7 n IF is a nonempty bounded subset in A and

A0 =/4 n N n VF"* is compact. So A0 n c/ = 0 for every i E I and, there-

fore, |AT0| < 2C, which is a contradiction since the infinite compact subsets of

ßN have cardinality equal to 2C. Thus every bounded closed subset of A is

compact. On the other hand, vX ~ A is closed in vX and from Proposition 2

we have that i/A is not a A^-space.

A point x G A is a P-point in A if Z(f) is a neighborhood of x for all

/ G C(A) such that/(x) = 0. Then, A is a P-space if and only if every point

is a P-point in A.

Let us now look at an example of a space satisfying the hypothesis of

Theorem 2. Assume (CH). According to Rudin [5, 6V] there is a P-point/> in

ßN ~ N. Let {Ga}a<u¡ be a basis of clopen neighborhoods for/?, such that

Ga C Gß, Ga^= Gß for all ß < a. We define inductively a family of non-

empty clopen sets {Va}a<u¡ in ßN ~ N such that Va c Ga ~ Ga+X for all

a < ux. If A = N u {Ua<UiFa}, according to Negrepontis [13], vX = A u

{/>} and since /> is a P-point in ßN ~ A, it is not adherent to any sequence in

X ~ N. From Theorem 2 we deduce that A is a kR -space and that vX is not,

with which question (4) is negatively resolved.

From this example we shall give an infinite class of £Ä-spaces Z for which

vZ is not a kR-space. By a (0,l}-valued measure on a set F, we mean a

countably additive function defined on the family of all subsets of F and
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assuming only the values 0 or 1. We call a cardinal m measurable if a set F of

cardinal m admits a {0,l}-valued measure a such that o(F) = 1, and a({x})

= 0 for every x E F. A discrete space is realcompact if and only if its

cardinal is nonmeasurable [5, T.12.2].

Theorem 3. Let X be a locally compact space such that vX is not a kR-space.

Let Y be a pseudocompact k-space and suppose that X X Y has nonmeasurable

cardinal. Then p(X X Y) is a kR-space and v(X X Y) is not.

Proof. The locally compact spaces are characterized by the property that

the products with /c-spaces are /c-spaces [11, T.3.1]. Therefore X X Y is a

/t-space and from Theorem 1, p(X X Y) is a /cÄ-space. On the other hand,

v(X X Y) = vX X vY [3, T.2.4], and since vX is not a kR-spàcc, it follows that

v(X X Y) is not a /c^-space.

From (W), (NS,) and (NS2), we now obtain the following corollary.

Corollary. Assuming (CH), there exist infinite spaces Z for which CC(Z) is

a complete, barrelled, and nonbornological space.

Note. If A' is a discrete space of measurable cardinal then vX is a

nondiscrete P-space and, therefore, vX is not a kR -space.

Question 5. The main result which we shall now prove is that for kR-spetces

X the condition that vX is not a kR-space is equivalent to the fact that kR(vX)

is not realcompact. In [9] the following theorem is proved:

Theorem A. Let (X,9) be a completely regular Hausdorff space and let Y be

a subset in ßX which strictly contains X. Let % be a topology on Y strictly finer

than the induced topology by ßX such that the restriction of % to X coincides

with 9 and that X is a dense subset in Y for %. Then (Y,%) is not a completely

regular space.

If A is a topological space provided with the topology 9 and M is a subset

of X, we denote by M[<5] the set M provided with the topology induced by

9.
Theorem 4. If M is a kR-space, then the following conditions are equivalent:

(a) vM is not a kR-space.

(b) The associated kR-space to vM is not realcompact.

Proof. That (b) implies (a) is trivial. We are going to prove that (a) implies

(b). Write 9 (resp. <t1) for the topology of X = vM (resp. kRX). Suppose that

X is not a kR-sp&ce. Since X =£ kRX we have that % is strictly finer than 9.

Thus, since M[*#] is a kR-space, it follows that both topologies coincide on M.

According to Theorem A, M is not dense in kRX. Suppose that kRX is

realcompact and let H = M^. Then X =£ H and H[%] is realcompact. Let us

now see that C%(H) c Cj(H), where C<^H) (resp. Can(H)) is the ring of all

continuous real-valued functions on H[9] (resp. //[%]). If / E C%(//) and

g = f\M then g E C(M) and there is an extension g E C^H) of g to H,

because M is C-embedded in X. Thus, g E Cg^H) and g\M = f\M and
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therefore / = g and / G Cg(/7). From here it results that Cqi(H) = C^H)

and that therefore //[f] is realcompact, which is impossible, since A =vM

and A ^ H. Then kRX is not realcompact.

As a consequence of Theorem 3 we have the following

Corollary. Let X be a locally compact space such that vX is not a kR-space

and let Y be a pseudocompact k-space. If X X Y has nonmeasurable cardinal,

then kR(v(X X Y)) is not realcompact.

Note. If A is a discrete space of measurable cardinal we know that vX is

not a kR-space and, according to Theorem 4, kR(vX) is not realcompact.

I am informed that Question 2 was also proven by R. Haydon with a

different example.
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