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GROUPS WITH AN ABELIAN SYLOW SUBGROUP

JOHN W. BALLARD1

Abstract. The purpose of this note is to obtain a modular refinement of

Brauer's induction theorem for groups with an abelian Sylow subgroup.

1. Introduction. Let x be a complex irreducible character of a finite group

G. Brauer's induction theorem shows that x may be expressed as an integer

linear combination of characters induced from elementary subgroups of G.

The object of this note is to show that if a Sylow /»-subgroup of G is abelian,

then x may be expressed as an integer linear combination of characters

induced from elementary subgroups whose /»-part is contained in the /»-defect

group of x-

2. Notation. For H a finite group let ch(i/)> the ring of generalized

characters, be the set of integer linear combinations of the complex irre-

ducible characters of H. If x and \p are elements of ch(H), (x^h denotes

their usual inner product.

A group E is elementary if it is the direct product of a q-group and a cyclic

<7'-group, for some prime q. Note that for any elementary group E, we may

write E = A X B where A is a/»-group and B is a/»'-group. The subgroup A

is referred to as the/»-part of E.

For g G G, let gp denote the /»-part of g. The /»-defect group of an

irreducible character is a defect group of the /»-block which contains the

character.

3. General case. Let P be a Sylow /»-subgroup of G. In this section we

assume that D is a subgroup of P which satisfies the following two conditions.

(i) For any g E G, Dg n P Q D.

(ii) For any subgroup A Q P, the restriction homomorphism of ch(A) into

ch(A n D) is surjective.

If E = A X B is an elementary subgroup of G, let A' = A n D and

E' = A' X B.

Proposition. Let x be an element of ch(G) such that x(g) = 0 if gp is not

conjugate to an element of D. Then x may be expressed as an integer linear

combination of characters induced from elementary subgroups whose p-part is

contained in D.
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Step 1. Let E = A X B be an elementary subgroup with A Q P. Then |£:

E'\~xXe' is a generalized character of £".

Proof. It suffices to show that \E : E'\~l(x,9)E, is an integer for any

irreducible character 9 of E'.

Now A C P so by hypothesis (i), a E. A is G-conjugate to an element of D

if and only if a E A'. Since x vanishes on any element whose />-part is not

conjugate to an element of D, it follows that Xe vanishes on any element not

in £'. So for \p E ch(£)

(x,t)E=\E:E'\-\x,t)E..

Any irreducible character of A ' X B is of the form a X ß, where a and ß are

irreducible characters of A' and B respectively. By hypothesis (ii), a is the

restriction to A' of some generalized character of A. It follows that the

restriction homomorphism of c\i{E) into ch(£") is surjective. Choosing \¡> E

ch(£) such that \f/E. = 9 in the preceding equation establishes the result.

Step 2. Let E = A X B be an elementary subgroup with ,4 ç P. If \p E

ch(£), then

{tXE)G=\E:E'\-\ttx)E)G-

Proof. For g E G we have

where t//° is defined by ty"(y) = ¡p(y) iî y E E and 0 otherwise. Now if

y E E, then^, E yl and again by hypothesis (i), x(y) = 0 ^yP £ ^'- So

X^ = X(^0°

and the result then follows from the definition of the induced character.

Step 3. We now complete the proof of the proposition. By Brauer's

induction theorem [2, Theorem 16.2] we may write

(*) i-2<#,6

where the a, are integers and the \p¡ are linear characters of elementary

subgroups £,. Write E¡ = A¡ X B¡. Replacing E¡ by a conjugate subgroup if

necessary, we may assume that A¡ C P.

From (*) we have

and by Step 2

(te)C- 4?.   where 0, = \E, : £/f '(^X)£/.

Now by Step 1, 9¡ is a generalized character of £",', which proves the

proposition.

Remark. In equation (*) it is easy to see that there is some elementary

subgroup E¡ with A¡ = P. So the corresponding 9j which appears in the
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expression for x is a generalized character of an elementary subgroup whose

/»-part equals D.

4. Applications. We first apply the proposition with D = 1 to obtain the

following result of Brauer [1, Theorem 5].

Corollary 1. Suppose that x e ch(G) is such that x(g) = 0 if gp ¥= 1. Then

X is an integer linear combination of characters induced from elementary

subgroups whose order is prime top.

Note that if x is a principal indecomposable character for the prime /», then

X satisfies the hypothesis of the corollary.

For D a/»-subgroup of G, let chD(G) denote the elements of ch(G) which

are integer linear combinations of characters of /»-adic indecomposable

representations with vertex contained in D. Note that if x G chß(G), then x

vanishes on any element of G whose /»-part is not conjugate to an element of

D [2, Lemma 59.5]. Moreover, if x is an irreducible character of G with

/»-defect group D, then a vertex for x is contained in D and hence x e

chD(G). So the result stated in the introduction is a consequence of the

following corollary.

Corollary 2. Suppose that a Sylow p-subgroup of G is abelian. Let D be a

p-subgroup of G. Then every element ofchD(G) is an integer linear combination

of characters induced from elementary subgroups whose p-part is contained in D.

Proof. We use induction on \D\. If \D\ = 1, the result follows from

Corollary 1.

In general, if x G crio(G), then the Green correspondence [3, Theorem 2]

applied to G, N = NG(D) and D shows that

x - 4G e 2 ch0nfli(G)
g<£N

for some \p e chD(N). For g <$. N, the induction hypothesis yields the result

for chDnD!!(G). Since a Sylow/»-subgroup of N is abelian, D satisfies the two

conditions of §3 with respect to the group N. Now applying the proposition to

the group N and the character \p yields the result for ^ and hence completes

the proof of the corollary.

It would be interesting to know to what extent the analog of Corollary 2

holds for an arbitrary finite group.

The author would like to thank the referee for his helpful suggestions.
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