GROUPS WITH AN ABELIAN SYLOW SUBGROUP

JOHN W. BALLARD¹

ABSTRACT. The purpose of this note is to obtain a modular refinement of Brauer's induction theorem for groups with an abelian Sylow subgroup.

- 1. Introduction. Let χ be a complex irreducible character of a finite group G. Brauer's induction theorem shows that χ may be expressed as an integer linear combination of characters induced from elementary subgroups of G. The object of this note is to show that if a Sylow p-subgroup of G is abelian, then χ may be expressed as an integer linear combination of characters induced from elementary subgroups whose p-part is contained in the p-defect group of χ .
- **2. Notation.** For H a finite group let ch(H), the ring of generalized characters, be the set of integer linear combinations of the complex irreducible characters of H. If χ and ψ are elements of ch(H), $(\chi,\psi)_H$ denotes their usual inner product.

A group E is elementary if it is the direct product of a q-group and a cyclic q'-group, for some prime q. Note that for any elementary group E, we may write $E = A \times B$ where A is a p-group and B is a p'-group. The subgroup A is referred to as the p-part of E.

For $g \in G$, let g_p denote the *p*-part of *g*. The *p*-defect group of an irreducible character is a defect group of the *p*-block which contains the character.

- 3. General case. Let P be a Sylow p-subgroup of G. In this section we assume that D is a subgroup of P which satisfies the following two conditions.
 - (i) For any $g \in G$, $D^g \cap P \subset D$.
- (ii) For any subgroup $A \subseteq P$, the restriction homomorphism of ch(A) into $ch(A \cap D)$ is surjective.
- If $E = A \times B$ is an elementary subgroup of G, let $A' = A \cap D$ and $E' = A' \times B$.

PROPOSITION. Let χ be an element of $\operatorname{ch}(G)$ such that $\chi(g)=0$ if g_p is not conjugate to an element of D. Then χ may be expressed as an integer linear combination of characters induced from elementary subgroups whose p-part is contained in D.

Received by the editors April 22, 1977.

AMS (MOS) subject classifications (1970). Primary 20C15; Secondary 20C20.

¹Research partially supported by a National Science Foundation grant.

Step 1. Let $E = A \times B$ be an elementary subgroup with $A \subseteq P$. Then $|E: E'|^{-1}\chi_{E'}$ is a generalized character of E'.

PROOF. It suffices to show that $|E:E'|^{-1}(\chi,\theta)_{E'}$ is an integer for any irreducible character θ of E'.

Now $A \subseteq P$ so by hypothesis (i), $a \in A$ is G-conjugate to an element of D if and only if $a \in A'$. Since χ vanishes on any element whose p-part is not conjugate to an element of D, it follows that χ_E vanishes on any element not in E'. So for $\psi \in \operatorname{ch}(E)$

$$(\chi, \psi)_E = |E: E'|^{-1} (\chi, \psi)_{E'}$$

Any irreducible character of $A' \times B$ is of the form $\alpha \times \beta$, where α and β are irreducible characters of A' and B respectively. By hypothesis (ii), α is the restriction to A' of some generalized character of A. It follows that the restriction homomorphism of ch(E) into ch(E') is surjective. Choosing $\psi \in ch(E)$ such that $\psi_{E'} = \theta$ in the preceding equation establishes the result.

Step 2. Let $E = A \times B$ be an elementary subgroup with $A \subseteq P$. If $\psi \in ch(E)$, then

$$(\psi \chi_E)^G = |E: E'|^{-1} ((\psi \chi)_{E'})^G.$$

PROOF. For $g \in G$ we have

$$(\psi \chi_E)^G(g) = |E|^{-1} \sum_{x \in G} \psi^o(g^x) \chi(g^x)$$

where ψ^o is defined by $\psi^o(y) = \psi(y)$ if $y \in E$ and 0 otherwise. Now if $y \in E$, then $y_p \in A$ and again by hypothesis (i), $\chi(y) = 0$ if $y_p \notin A'$. So

$$\chi\psi^o=\chi(\psi_{E'})^o$$

and the result then follows from the definition of the induced character.

Step 3. We now complete the proof of the proposition. By Brauer's induction theorem [2, Theorem 16.2] we may write

$$1 = \sum a_i \psi_i^G$$

where the a_i are integers and the ψ_i are linear characters of elementary subgroups E_i . Write $E_i = A_i \times B_i$. Replacing E_i by a conjugate subgroup if necessary, we may assume that $A_i \subseteq P$.

From (*) we have

$$\chi = \sum a_i (\psi_i \chi_{E_i})^G$$

and by Step 2

$$(\psi_i \chi_E)^G = \theta_i^G$$
, where $\theta_i = |E_i : E_i'|^{-1} (\psi_i \chi)_{E_i'}$.

Now by Step 1, θ_i is a generalized character of E'_i , which proves the proposition.

REMARK. In equation (*) it is easy to see that there is some elementary subgroup E_i with $A_i = P$. So the corresponding θ_i which appears in the

expression for χ is a generalized character of an elementary subgroup whose p-part equals D.

4. Applications. We first apply the proposition with D = 1 to obtain the following result of Brauer [1, Theorem 5].

COROLLARY 1. Suppose that $\chi \in \operatorname{ch}(G)$ is such that $\chi(g) = 0$ if $g_p \neq 1$. Then χ is an integer linear combination of characters induced from elementary subgroups whose order is prime to p.

Note that if χ is a principal indecomposable character for the prime p, then χ satisfies the hypothesis of the corollary.

For D a p-subgroup of G, let $\operatorname{ch}_D(G)$ denote the elements of $\operatorname{ch}(G)$ which are integer linear combinations of characters of p-adic indecomposable representations with vertex contained in D. Note that if $\chi \in \operatorname{ch}_D(G)$, then χ vanishes on any element of G whose p-part is not conjugate to an element of D [2, Lemma 59.5]. Moreover, if χ is an irreducible character of G with p-defect group D, then a vertex for χ is contained in D and hence $\chi \in \operatorname{ch}_D(G)$. So the result stated in the introduction is a consequence of the following corollary.

COROLLARY 2. Suppose that a Sylow p-subgroup of G is abelian. Let D be a p-subgroup of G. Then every element of $\operatorname{ch}_D(G)$ is an integer linear combination of characters induced from elementary subgroups whose p-part is contained in D.

PROOF. We use induction on |D|. If |D| = 1, the result follows from Corollary 1.

In general, if $\chi \in \operatorname{ch}_D(G)$, then the Green correspondence [3, Theorem 2] applied to G, $N = N_G(D)$ and D shows that

$$\chi - \psi^G \in \sum_{g \notin N} \mathrm{ch}_{D \cap D^g}(G)$$

for some $\psi \in \operatorname{ch}_D(N)$. For $g \notin N$, the induction hypothesis yields the result for $\operatorname{ch}_{D \cap D^g}(G)$. Since a Sylow *p*-subgroup of N is abelian, D satisfies the two conditions of §3 with respect to the group N. Now applying the proposition to the group N and the character ψ yields the result for ψ and hence completes the proof of the corollary.

It would be interesting to know to what extent the analog of Corollary 2 holds for an arbitrary finite group.

The author would like to thank the referee for his helpful suggestions.

REFERENCES

- 1. R. Brauer, Applications of induced characters, Amer. J. Math. 69 (1947), 709-716. MR 9, 268.
- 2. L. Dornhoff, Group representation theory, Parts A and B, Marcel Dekker, New York, 1971. MR 50 #458.
- 3. J. A. Green, A transfer theorem for modular representations, J. Algebra 1 (1964), 73-84. MR 29 #147.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195