ON CONTRACTIONS SATISFYING Alg $T = \{T\}'$

PEI YUAN WU¹

ABSTRACT. For a bounded linear operator T on a Hilbert space let $\{T\}'$, $\{T\}''$ and Alg T denote the commutant, the double commutant and the weakly closed algebra generated by T and 1, respectively. Assume that T is a completely nonunitary contraction with a scalar-valued characteristic function $\psi(\lambda)$. In this note we prove the equivalence of the following conditions: (i) $|\psi(e^{it})| = 1$ on a set of positive Lebesgue measure; (ii) Alg $T = \{T\}'$; (iii) every invariant subspace for T is hyperinvariant. This generalizes the well-known fact that compressions of the shift satisfy Alg $T = \{T\}'$.

For an arbitrary operator T on a Hilbert space it is easily seen that the inclusions Alg $T \subseteq \{T\}'' \subseteq \{T\}'$ hold. Let H^2 be the usual Hardy space and let ψ be a scalar-valued inner function. Consider the compression of the shift T defined on the space $H^2 \ominus \psi H^2$ by

$$(Tf)(e^{it}) = P[e^{it}f(e^{it})] \text{ for } f \in H^2 \ominus \psi H^2,$$

where P denotes the (orthogonal) projection onto the space $H^2 \ominus \psi H^2$. It was shown by Sarason [3] that Alg $T = \{T\}'$. (In fact, he showed more than this. He proved that every operator in $\{T\}'$ is of the form U(T) for some $U \in H^{\infty}$.) Note that here T is a completely nonunitary (c.n.u.) contraction whose characteristic function ψ is scalar-valued and satisfies $|\psi(e^{it})| = 1$ a.e. In this note we give necessary and sufficient conditions that a c.n.u. contraction with a scalar-valued characteristic function satisfy Alg $T = \{T\}'$. Indeed, we want to prove

THEOREM. Let T be a c.n.u. contraction with a scalar-valued characteristic function ψ . Then the following conditions are equivalent to each other:

- (i) $|\psi(e^{it})| = 1$ on a set of positive Lebesgue measure;
- (ii) Alg $T = \{T\}'$;
- (iii) every invariant subspace for T is hyperinvariant.

Thus Sarason's result follows from the implication (i) \Rightarrow (ii) of our Theorem. It is interesting to contrast our result with the fact, due to Sz.-Nagy and Foiaş [6], that a c.n.u. contraction T with the scalar-valued characteristic function ψ satisfies $\{T\}'' = \{T\}'$ if and only if $\psi(\lambda) \not\equiv 0$. Note also that

Received by the editors January 17, 1977 and, in revised form, March 11, 1977.

AMS (MOS) subject classifications (1970). Primary 47A45; Secondary 47A15, 47C05.

Key words and phrases. Completely nonunitary contractions, characteristic functions, invariant subspaces, hyperinvariant subspaces, commutants, algebras of operators.

¹The author acknowledges financial support from National Science Council of Taiwan.

whether (ii) and (iii) are equivalent for an arbitrary operator T is still an open question (cf. [1]).

In the proof of our Theorem we will extensively use the functional model for c.n.u. contractions. The readers are referred to [5] for the basic definitions and terminologies. Throughout this note results from [5] will be used without specific mentioning.

Let T be a c.n.u. contraction with the scalar-valued characteristic function ψ . Consider the functional model for T, that is, consider T being defined on the space $H \equiv [H^2 \oplus \overline{\Delta L^2}] \ominus \{\psi w \oplus \Delta w \colon w \in H^2\}$ by

$$T(f \oplus g) = P(e^{it}f \oplus e^{it}g) \text{ for } f \oplus g \in H,$$

where $\Delta = (1 - |\psi|^2)^{1/2}$ and P denotes the (orthogonal) projection onto H. Let Lat T denote the lattice of invariant subspaces for T, and let $T^{(n)}$ denote the operator $T \oplus \cdots \oplus T$ acting on the space $H \oplus \cdots \oplus H$. Note that

the characteristic function of $T^{(n)}$ is the $n \times n$ matrix-valued function

$$\Phi = \begin{bmatrix} \psi & & 0 \\ & \ddots & \\ 0 & & \psi \end{bmatrix}.$$

Let $K \in \text{Lat } T^{(n)}$ and let $\Phi = \Phi_2 \Phi_1$ be the corresponding regular factorization. We first prove the following

LEMMA. If $|\psi(e^{it})| = 1$ on a set of positive Lebesgue measure, then Φ_1 and Φ_2 are $n \times n$ matrix-valued functions.

PROOF. Assume that Φ_1 and Φ_2 are, respectively, $m \times n$ and $n \times m$ matrix-valued functions. Let

$$\Delta(e^{it}) = \left(1 - \Phi(e^{it})^*\Phi(e^{it})\right)^{1/2}$$

and

$$\Delta_{j}(e^{it}) = (1 - \Phi_{j}(e^{it}) * \Phi_{j}(e^{it}))^{1/2}, \quad j = 1, 2.$$

Let $\delta(e^{it}) = \dim \overline{\Delta(e^{it})C^n}$, $\delta_1(e^{it}) = \dim \overline{\Delta_1(e^{it})C^n}$ and $\delta_2(e^{it}) = \dim \overline{\Delta_2(e^{it})C^n}$, where C denotes the complex plane. Since $\Phi = \Phi_2\Phi_1$ is a regular factorization, we have

(1)
$$\delta(e^{it}) = \delta_1(e^{it}) + \delta_2(e^{it}) \quad \text{a.e.}$$

(cf. [5, Proposition VII. 3.3]). Since $|\psi(e^{it})| = 1$ on a set of positive Lebesgue measure, say α , it follows that $\Delta(e^{it}) = 0$ on α . Hence $\delta(e^{it}) = 0$ on α . If m > n then $\Phi_2(e^{it})$ cannot be isometric from \mathbb{C}^m to \mathbb{C}^n . Thus $\delta_2(e^{it}) > 0$ a.e., which contradicts (1). On the other hand, if m < n, then $\Phi_1(e^{it})$ cannot be isometric from \mathbb{C}^n to \mathbb{C}^m . Then $\delta_1(e^{it}) > 0$ a.e. and we also have a contradiction. This proves that m = n.

PROOF OF THE THEOREM. If $\psi \equiv 0$, then, by the previously mentioned result of Sz.-Nagy and Foiaş [6], it is easily seen that none of the three conditions is

satisfied. Hence we may assume hereafter that $\psi \neq 0$.

(i) \Rightarrow (ii). Let S be an operator in $\{T\}'$. To show that $S \in \text{Alg } T$ it suffices to show that Lat $T^{(n)} \subseteq \text{Lat } S^{(n)}$ for all n > 1 (cf. [2, Theorem 7.1]). Let $K \in \text{Lat } T^{(n)}$ and $\Phi = \Phi_2 \Phi_1$ be the corresponding regular factorization. As proved in the Lemma, Φ_1 and Φ_2 are $n \times n$ matrix-valued functions. In the functional model of $T^{(n)}$,

$$K = \left\{ \Phi_2 u \oplus Z^{-1}(\Delta_2 u \oplus v) \colon u \in H^2(\mathbb{C}^n), v \in \overline{\Delta_1 L^2(\mathbb{C}^n)} \right\}$$

$$\ominus \left\{ \Phi w \oplus \Delta w \colon w \in H^2(\mathbb{C}^n) \right\},$$

where Z denotes the unitary operator from $\overline{\Delta L^2(\mathbb{C}^n)}$ to $\overline{\Delta_2 L^2(\mathbb{C}^n)} \oplus \overline{\Delta_1 L^2(\mathbb{C}^n)}$ defined by

$$Z(\Delta v) = \Delta_2 \Phi_1 v \oplus \Delta_1 v, \qquad v \in L^2(\mathbb{C}^n).$$

Let $\Phi_2 u \oplus t$ be an element in K, where $u = (u_i)_i \in H^2(\mathbb{C}^n)$ and $t = (t_i)_i \in \Delta L^2(\mathbb{C}^n)$ satisfy $Z(t) = \Delta_2 u \oplus v$ for some $v = (v_i)_i \in \Delta_1 L^2(\mathbb{C}^n)$. Here we use the symbol ()_i to denote the components of a vector. We want to show that $S^{(n)}(\Phi_2 u \oplus t) \in K$. Note that S is of the form

$$S = P \begin{pmatrix} A & 0 \\ B & C \end{pmatrix},$$

where $A \in H^{\infty}$ and $B, C \in L^{\infty}$ satisfy $B\psi + C\Delta = \Delta A$ a.e. (cf. [6]). Assume that $\Phi_1 = (\xi_{ii})$ and $\Phi_2 = (\psi_{ii})$. Since

$$\Phi_2 u \oplus t = \left(\sum_{j=1}^n \psi_{ij} u_j\right) \oplus (t_i)_{i}$$

we have

$$S^{(n)}(\Phi_{2}u \oplus t) = \left[P\begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \begin{bmatrix} \sum_{j=1}^{n} \psi_{ij} u_{j} \\ t_{i} \end{bmatrix}_{i} \right]$$

$$= \left[P\begin{pmatrix} A \sum_{j=1}^{n} \psi_{ij} u_{j} \\ B \sum_{j=1}^{n} \psi_{ij} u_{j} + Ct_{i} \end{bmatrix}_{i} \right]$$

$$= \begin{bmatrix} A \sum_{j=1}^{n} \psi_{ij} u_{j} - \psi w_{i} \\ B \sum_{j=1}^{n} \psi_{ij} u_{\gamma} + Ct_{i} - \Delta w_{i}, \end{bmatrix}_{i}$$

for some $w_i \in H^2$, i = 1, 2, ..., n. Since $\Phi = \Phi_2 \Phi_1$, we have

$$\sum_{k=1}^{n} \psi_{ik} \xi_{kj} = \begin{cases} \psi, & \text{if } j = i, \\ 0, & \text{otherwise,} \end{cases}$$
 $i, j = 1, \ldots, n.$

Using Cramer's rule to solve this system of equations for ψ_{ik} , we obtain

$$(\det \Phi_1)\psi_{ik} = \psi \eta_{ik} \qquad i, k = 1, \ldots, n,$$

where η_{ik} is the determinant, multiplied by $(-1)^{i+k}$, of the matrix obtained from Φ_1 by deleting its *i*th column and *k*th row. It follows that

$$(\det \Phi_1) B \sum_{j=1}^n \psi_{ij} u_{\gamma} = B \sum_{j=1}^n \psi \eta_{ij} u_j = \Delta (A - C) \sum_{j=1}^n \eta_{ij} u_j.$$

Hence $(\det \Phi_1)B(\sum_{j=1}^n \psi_{ij}u_j)_i$ is an element of $\overline{\Delta L^2(\mathbb{C}^n)}$. Thus we have

$$Z\left[(\det \Phi_1)B\left(\sum_{j=1}^n \psi_{ij}u_j\right)_i\right] = Z\left[\Delta(A-C)\left(\sum_{j=1}^n \eta_{ij}u_j\right)_i\right]$$

$$= \left[\Delta_2\Phi_1(A-C)\left(\sum_{j=1}^n \eta_{ij}u_j\right)_i\right] \oplus \left[\Delta_1(A-C)\left(\sum_{j=1}^n \eta_{ij}u_j\right)_i\right]$$

$$= \left[\Delta_2(A-C)\left(\sum_{k=1}^n \xi_{ik}\left(\sum_{j=1}^n \eta_{kj}u_j\right)\right)_i\right] \oplus \left[\Delta_1(A-C)\left(\sum_{j=1}^n \eta_{ij}u_j\right)_i\right]$$

Since

$$\sum_{k=1}^{n} \xi_{ik} \left(\sum_{j=1}^{n} \eta_{kj} u_{j} \right) = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} \xi_{ik} \eta_{kj} \right) u_{j}$$

$$= \sum_{j=1}^{n} (\det \Phi_{1}) \delta_{ij} u_{j} \qquad (\delta_{ij} \text{ the Kronecker } \delta) = (\det \Phi_{1}) u_{i},$$

the above becomes

$$[\Delta_{2}(A-C)((\det \Phi_{1})u_{i})_{i}] \oplus \left[\Delta_{1}(A-C)\left(\sum_{j=1}^{n} \eta_{ij}u_{j}\right)_{i}\right]$$

$$= \left[\Delta_{2}(A-C)(\det \Phi_{1})u\right] \oplus \left[\Delta_{1}(A-C)\left(\sum_{j=1}^{n} \eta_{ij}u_{j}\right)_{i}\right].$$

On the other hand.

(4)
$$Z\left[(\det \Phi_1)B\left(\sum_{j=1}^n \psi_{ij}u_j\right)_i\right] = (\det \Phi_1)Z\left[\left(B\sum_{j=1}^n \psi_{ij}u_j\right)_i\right] = (\det \Phi_1)(X \oplus Y),$$

say, for some element $X \oplus Y$ in $\overline{\Delta_2 L^2(\mathbb{C}^n)} \oplus \overline{\Delta_1 L^2(\mathbb{C}^n)}$. Equating the first components in (3) and (4) we obtain

(5)
$$\Delta_2(A-C)(\det \Phi_1)u = (\det \Phi_1)X.$$

Since $\psi \neq 0$, we have det $\Phi \neq 0$, and hence det $\Phi_1 \neq 0$. By the F. and M. Riesz theorem, (5) yields that $\Delta_2(A - C)u = X$. Thus

$$Z\left[\left(B\sum_{j=1}^{n}\psi_{ij}u_{j}+Ct_{i}\right)_{i}\right]=Z\left[\left(B\sum_{j=1}^{n}\psi_{ij}u_{j}\right)_{i}\right]+Z((Ct_{i})_{i})$$

$$=(X\oplus Y)+Z(Ct)=\left[\Delta_{2}(A-C)u\oplus Y\right]+C(\Delta_{2}u\oplus v)$$

$$=\Delta_{2}Au\oplus (Y+Cv).$$

Hence (2) can be written as

$$S^{(n)}(\Phi_2 u \oplus t) = \left\{ \Phi_2 A u \oplus Z^{-1} \left[\Delta_2 A u \oplus (Y + Cv) \right] \right\} - (\Phi w \oplus \Delta w),$$

where $w = (w_i)_i \in H^2(\mathbb{C}^n)$. This shows that $S^{(n)}(\Phi_2 u \oplus t) \in K$ as asserted and completes the proof of the implication (i) \Rightarrow (ii).

- (ii) \Rightarrow (iii). This is trivial.
- (iii) \Rightarrow (i). Assume $|\psi(e^{it})| < 1$ a.e. It was proved in [7] that the hyperinvariant subspaces for T are of the form $\{f \oplus g \in H: -\Delta f + \psi g \in L^2(E) \text{ and } f \in IH^2\}$, where E is a measurable subset of the unit circle and I is an inner divisor of ψ_i where ψ_i denotes the inner factor of ψ . By Proposition 7.2 of [4], invariant subspaces of this form are precisely those arising from scalar regular factorizations of ψ . However, since $|\psi(e^{it})| < 1$ a.e., it is known [5, p. 301] that nontrivial vector regular factorizations of ψ exist. By the uniqueness of the correspondence between regular factorizations of ψ and invariant subspaces for T, the invariant subspace corresponding to any such vector regular factorization of ψ cannot arise from a scalar regular factorization, and hence is not hyperinvariant. Thus we obtain a contradiction of (iii) and complete the proof.

COROLLARY. Let T be a c.n.u. contraction with a scalar-valued inner characteristic function. Then Alg $T = \{T\}'$.

We are grateful to the referee for making the proof of (iii) \Rightarrow (i) of our Theorem more conceptual and less computational.

REFERENCES

- 1. J. A. Deddens, R. Gellar and D. A. Herrero, Commutants and cyclic vectors, Proc. Amer. Math. Soc. 43 (1974), 169-170.
- 2. H. Radjavi and P. Rosenthal, *Imvariant subspaces*, Springer-Verlag, Berlin and New York, 1973.
 - 3. D. Sarason, Generalized interpolation in H[∞], Trans. Amer. Math. Soc. 127 (1967), 179–203.
- 4. S. O. Sickler, The invariant subspaces of almost unitary operators, Indiana Univ. Math. J. 24 (1975), 635-650.
- 5. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó, Budapest, 1970.
 - 6. _____, On the structure of intertwining operators, Acta Sci. Math. 35 (1973), 225-254.
 - 7. P. Y. Wu, Hyperinvariant subspaces of the direct sum of certain contractions (preprint).

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, CHINA