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ON CONTRACTIONS SATISFYING Alg T = { T}'

PEI YUAN WU1

Abstract. For a bounded linear operator T on a Hubert space let {T}',

{T}" and Alg T denote the commutant, the double commutant and the

weakly closed algebra generated by T and 1, respectively. Assume that T is

a completely nonunitary contraction with a scalar-valued characteristic

function if>(X). In this note we prove the equivalence of the following

conditions: (i) |yHe")| = 1 on a set of positive Lebesgue measure; (ii)

Alg T = {T)'; (iii) every invariant subspace for T is hyperinvariant. This

generalizes the well-known fact that compressions of the shift satisfy Alg T
- {T}'.

For an arbitrary operator T on a Hubert space it is easily seen that the

inclusions Alg T E ( T}" E {T}' hold. Let H2 be the usual Hardy space and

let \p be a scalar-valued inner function. Consider the compression of the shift

T defined on the space H2 © 4>H2 by

(Tf)(e") = P[ei'f(ei')]    for/ £ H2 © 4>H2,

where P denotes the (orthogonal) projection onto the space H2 © \pH2. It

was shown by Sarason [3] that Alg T = {T}'. (In fact, he showed more than

this. He proved that every operator in {T}' is of the form U(T) for some

U E Hx.) Note that here T is a completely nonunitary (c.n.u.) contraction

whose characteristic function x¡/ is scalar-valued and satisfies |^(e")| = 1 a.e.

In this note we give necessary and sufficient conditions that a cn.u.

contraction with a scalar-valued characteristic function satisfy Alg T = {T}'.

Indeed, we want to prove

Theorem. Let T be a c.n.u. contraction with a scalar-valued characteristic

function ip. Then the following conditions are equivalent to each other:

(i) \yp(e")\ = 1 on a set of positive Lebesgue measure;

(ü)Algr={7}';
(iii) every invariant subspace for T is hyperinvariant.

Thus Sarason's result follows from the implication (i) => (ii) of our

Theorem. It is interesting to contrast our result with the fact, due to Sz.-Nagy

and Foia§ [6], that a c.n.u. contraction T with the scalar-valued characteristic

function \¡/ satisfies {T}" = {T}' if and only if \p(X) ̂  0. Note also that
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whether (ii) and (iii) are equivalent for an arbitrary operator T is still an open

question (cf. [1]).

In the proof of our Theorem we will extensively use the functional model

for c.n.u. contractions. The readers are referred to [5] for the basic definitions

and terminologies. Throughout this note results from [5] will be used without

specific mentioning.

Let T be a c.n.u. contraction with the scalar-valued characteristic function

\}/. Consider the functional model for T, that is, consider T being defined on

the space H = [H2 © AL2] 0 {^w © Aw: w G H2} by

T(f © g) = P (e"f © e"g)   for/ © g G H,

where A = (1 — |^|2)1/2 and P denotes the (orthogonal) projection onto H.

Let Lat T denote the lattice of invariant subspaces for T, and let T(n) denote

the operator T ©  • • • © T acting on the space H ©  • • • ®H. Note that

n t \ n
the characteristic function of Tw is the n x n matrix-valued function

> o1

0 $

Let AT G Lat T(n) and let 0 = $2$, be the corresponding regular

factorization. We first prove the following

Lemma. If \\p(e")\ = 1 on a set of positive Lebesgue measure, then $x and 3>2

are n X n matrix-valued functions.

Proof. Assume that Í», and <J>2 are, respectively, m x n and n x m

matrix-valued functions. Let

A(e") = (1 - $(í")*$(í"))1/2

and

A,(e") = (1 - S/e")*^"))172,      j = 1, 2.

Let fi(e") = dim A(e")C, 5,(e") = dim A,(e")C" and

82(e") = dim A2(e")Cm, where C denotes the complex plane. Since $ = $2$,

is a regular factorization, we have

(1) S(ei') = 6x(ei') + 82(e")    a.e.

(cf. [5, Proposition VII. 3.3]). Since \\¡/(e")\ = 1 on a set of positive Lebesgue

measure, say a, it follows that A(e") = 0 on a. Hence 8(e") = 0 on a. If

m > n then 4»2(e") cannot be isometric from C to C. Thus 82(e") > 0 a.e.,

which contradicts (1). On the other hand, if m < n, then $,(e") cannot be

isometric from C to C". Then 8x(e") > 0 a.e. and we also have a contra-

diction. This proves that m = n.

Proof of the Theorem. If ty = 0, then, by the previously mentioned result

of Sz.-Nagy and Foias, [6\, it is easily seen that none of the three conditions is
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satisfied. Hence we may assume hereafter that ifíO.

(i) => (ii). Let S be an operator in ( T)'. To show that S £ Alg T it suffices

to show that Lat T(n) E Lat Sin) for all n > 1 (cf. [2, Theorem 7.1]). Let

K £ Lat r(n) and í» = 3>2<I>, De tne corresponding regular factorization. As

proved in the Lemma, $, and i>2 are n x « matrix-valued functions. In the

functional model of T(n),

K = {<D2H © Z"1 (V ®v):uE H2(C), v £ A,L2(C) }

© {$w©Aw: wE //2(C)},

where Z denotes the unitary operator from AL2(C) to A2L2(C)©A,L2(C")

defined by

Z(Au) = A^.u © A.u,       o E L2(C).

Let 02m © f be an element in K, where m = (u¡)¡ E H2(C") and

f = (f,), £ AL2(C) satisfy Z(t) = A^ © o for some o = (v,)¡ E A,L2(C).

Here we use the symbol ( ), to denote the components of a vector. We want

to show that S(n)($2u © t) E K. Note that S is of the form

-'(Í   c)'
where A £ Hx and B, C E L°° satisfy B\P + CA = M. a.e. (cf. [6]). Assume

that 4», = (^) and $2 = (^). Since

we have

*2«©/- j 2 M) ® ('.-),

5(n)(<ï»2M © t) =
V5    C/

2 «Mj
y=i

(2)

A 2 ^M,-

* 2 *!,**+ Ci,-
y-1

^   2   ̂ y",  -  <K
7=1

5 2 «rV«r+ Q - Aw,,
7 = 1

for some w, E 7/, i = 1,2, ... , n. Since O = í>2í>i, we have
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n h,   if y = »,
S   i'ikik^ j i,j = I, ■ ■ ., n.

k = x [0,    otherwise,

Using Cramer's rule to solve this system of equations for \pik, we obtain

(det *,)»/<,* = in}*       i, k = I, . . . , n,

where % is the determinant, multiplied by (-l)i+k, of the matrix obtained

from <!>, by deleting its /th column and kth row. It follows that

(det *,)* 2  ^- 5 2  ^«y- A(¿ - C) 2  VÎT
7=1 7=1 7=1

Hence (det *,)5(2"=, t^«,), is an element of AL2(C). Thus we have

(det*,)*! 2  Ml = Z a(a - c) 2 m

WiV - c)( 2 %«7
7-1

^ - c)( 2 v»
7-1

Aj(yi - C) 2 ¿,*  S %"/
*-l \7=I

-^ - C)( 2  VtjUj
7-1

Since

2 6*  2 v> =22 €»%k
*-i     \7-i       /    y-iU-i        /

n

= 2 (det *,)5!/t/y        (5y the Kronecker 8) = (det *,)«,,
7=1

the above becomes

[A^ - C)((det *,)«,),.]©

(3)

M* - C)   2 v»
7-1

= [A2(/i - C)(det*,)M] ©

On the other hand,

(4)

(det*,)fi( 2  M
7-1

ix(a - c)[ 2 y»

«    2    V»
7-1

= (det *,)Z

= (det *,)(* © Y),

say, for some element A" © y in A2L2(C) ©A,L2(C). Equating the first

components in (3) and (4) we obtain



264 PEI YUAN WU

(5) ¿¿A - C)(det $,)u = (det *i)*-

Since $ ïé O, we have det $ ïé O, and hence det í>, S 0. By the F. and M.

Riesz theorem, (5) yields that ^(A - C)u = X. Thus

b2 *v»j + ct\   = z   \b2 ^«,1 + z((c/,),.)

= (* © y) + Z(Q) = [A^ - C)u © y] + C^m © o)

= A2^«©(y+ Cv).

Hence (2) can be written as

S(n)($2u © t) = {$ylt/ © Z'^^Au © (7 + Co)]} - (Ow © Aw),

where w = (w,), £ H2(C"). This shows that S(n)(02« © 0 E K as asserted

and completes the proof of the implication (i) =» (ii).

(ii) => (iii). This is trivial.

(iii)=>(i). Assume ^(e")! < 1 a.e. It was proved in [7] that the

hyperinvariant subspaces for T are of the form (/ © g E H: -A/+^gE

L2(E) and/ £ IH2}, where ¿s is a measurable subset of the unit circle and /

is an inner divisor of \p¡ where uV denotes the inner factor of \p. By Proposition

7.2 of [4], invariant subspaces of this form are precisely those arising from

scalar regular factorizations of \p. However, since |»Ke")l < 1 a-e-> i* is known

[5, p. 301] that non trivial vector regular factorizations of \p exist. By the

uniqueness of the correspondence between regular factorizations of \j/ and

invariant subspaces for T, the invariant subspace corresponding to any such

vector regular factorization of $ cannot arise from a scalar regular

factorization, and hence is not hyperinvariant. Thus we obtain a contra-

diction of (iii) and complete the proof.

Corollary. Let T be a c.n.u. contraction with a scalar-valued inner

characteristic function. Then Alg T = {T}'.

We are grateful to the referee for making the proof of (iii) =* (i) of our

Theorem more conceptual and less computational.
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