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A TREE ARGUMENT IN INFINITARY MODEL THEORY1

V. HARNIK AND M. MAKKAI

Abstract. A tree argument is used to show that any counterexample to

Vaught's conjecture must have an uncountable model. A similar argument

replaces the use of forcing by Burgess in a theorem on 2j equivalence

relations.

A. formula or a sentence is one of Lu u. A sentence </> is a counterexample to

Vaught's conjecture or, simply, a counterexample if it has more than «0 but less

than 2"° nonisomorphic countable models. A sentence is large if it has more

than N0 nonisomorphic countable models. A large sentence is minimal if for

every sentence \¡/, either <j> /\ \j/ or <b /\ -| v// is not large.

Theorem 1. Every counterexample can be strengthened to a minimal coun-

terexample, i.e., if a is a counterexample, then there is a minimal counter-

example 0 such that <í> |= a.

The proof of Theorem 1 uses a lemma due to Morley [8], whose

formulation depends on the following (stronger than usual) notion of frag-

ment. A set of formulas A is a fragment if it is closed under subformulas,

substitutions of terms, finitary logical operations and if it satisfies: whenever

<j)EA,V6eA (where 6 c A), then \/{3x9: 9 E 9}, V{</> A 8: 9 E S),
V ({</>} U @) all belong to A.

Lemma 2 [8]. Let A be a countable fragment. If T e àis a finitely consistent

set of sentences such that for all valid V® e A tnere is a 9 E ® which belongs

to T, then T is consistent.

Proof of Theorem 1. Assume that the theorem is false for some a. Then it

is easily seen that there is a countable fragment A containing a and such that

for every large <b E A s.t. <J> f= a, there is »// E A with both <b /\ \¡/ and <f> /\ -\\}/

large. Let {8„}n<u be an enumeration of all valid disjunctions belonging to A.

We are going to define a tree Ts, s E <u2 ( = the set of finite sequences of O's

and l's) such that for all í:

(a) Ts is a finite subset of A, a G Ts and /\Tsis& large sentence;

(b) TsA(0y and TsA<Xy are contradictory; and

(c) if lh s = i and 5, = V© then there are 9', 9" E 0 s.t. 9' E TsA<oy and
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Once the tree is constructed, consider, for each tj £"2 (= the set of infinite

sequences of 0's and l's), the set Tv = Ui^f,: » < w}- By (a), (c) and

Lemma 2, each Tv is consistent, hence has a countable model M^ (which, by

(a), is a model of a); by (b), if tj t^ tj' then Mn aé M^,. Hence (A/,,: tj Ew2} is

a collection of 2"° nonisomorphic countable models of a, a contradiction to

the assumption that a is a counterexample.

Thus, to conclude the proof, we have to indicate how to get Ts. This is done

by induction on the length of s. Take T^y = {a}. Assume that Ts has been

defined and lh s = /'. As /\ Ts E A is large and implies a, there is \p E A s.t.

both A^A'i' and A^Ai^ are large. If 5, = V ® then any of the

uncountably many models of /\TS A \L (/\TS A -j \p) is a model of some

A^, AM^A^AiM*)- with 9 E 0. Thus, there is 9' e 6 (9" E

0) s.t. /\Ts/\*/\9' (A^AnMn is large. Take 7><0> = Ts u

The proof of Theorem 1 is now complete.

Given a counterexample a, call a formula (#>(x) with free variables x (x a

finite sequence) large (with respect to a) if a A 3x<Xx) is large. Call <b(x)

minimal (w.r.t. a) if for all >Kx), <j>A<//or<r>A-|,r/is not large. Theorem 1

yields

Corollary 3. Every large (w.r.t. a given counterexample a) formula <b(x)

can be strengthened to a minimal formula.

Proof. Notice that <b(x) is large iff a A «Kc) (a sentence in the larger

language L(c) with c a sequence of new constants) is a counterexample and

that <Kx) is minimal w.r.t. o if f a A <KC) is a minimal counterexample. Now,

the assertion follows from Theorem 1.

Now assume that o is a minimal counterexample. For any fragment A

containing o, define TA = (<#>: ij>6A and <j> /\o is large}. If A is countable

then, by the minimality of a, T¿ is consistent (all but countably many of the

countable models of a are models of T¿) and A-complete. A formula ^(x) G

A is consistent with TA iff it is large. This observation easily yields

Lemma 4. // <b(x) is minimal, then for all countable A, // <f> G A then <j> is

complete (in A) with respect to T¿ (cf. the definition on p. 61 o/[4]).

Call a fragment A closed if for every large <Kx) G A there is a minimal

formula <i>'(x) G A s.t. N <i>' -» <i>. By Corollary 3, every countable fragment

can be enlarged to a closed one. If A is countable and closed then, by Lemma

4 and the definition of 7'A, there are no incompletable formulas ^(x) with

respect to TA. Hence, rA has a prime model (cf. [4, pp. 61-64, especially

Theorem 16]). Moreover, it is easily seen that if A is closed then a formula

<j> G A is complete w.r.t. 7¿ iff it is minimal. Hence, each finite sequence of

elements in the prime model of TA satisfies a minimal formula belonging to A.
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As an application, we can now prove the following result (announced in

[2])-

Theorem 5. If a is a counterexample then it has an uncountable model N.

Moreover, N can be so chosen as to satisfy only large sentences; thus, N is not

LMU equivalent to any countable structure.

Proof. By Theorem 1, we may assume that a is minimal. We define by

induction an increasing chain of countable fragments Aa, and of countable

structures Ma, a < u, s.t.:

(i) a £ Aa, and Aa is closed.

(ii) Ma is the prime model of TA .

(iii) Ma ¥= Ma+X, Ma <^ Ma+, and Mx = U a<KMa for a limit X.

Once this is done, we shall take N = (J o<10 Ma.

The inductive definition goes as follows:

Assume that Aa and Ma are defined.

Let Aa+1 D Aa be a closed fragment which contains a Scott sentence </> of

Ma (cf. Chapter 2 in [4]). Let Ma+X be the prime model of 7^. As

Ma+1(= rAo (c 7a„+1) an<i Ma is a prime model of 7A , Ma can be embedded

in Ma+X. Thus, we may take Ma <Aa Ma+X. As the Scott sentence <t> of Ma is

obviously not large, <£ £ rA , hence Ma+X (= -| <b. This shows that Ma sé

A/a+1, hence, M„^Afa+1.

For a limit X, take AA = Ua<AA„ and Mx = UaexMx- Then AA is

obviously closed and every finite sequence of elements of Mx satisfies a

minimal, hence by Lemma 4, complete (w.r.t. T¿J formula. It follows (again

by Theorem 16 in [4]) that Mx is the prime model of Tà .

As said before, we take N = (J a<a Ma to get an uncountable model of a.

If N 1= <b then there is a closed and unbounded set C E ux s.t. Ma ^= <b for

all a E C. By construction, Ma sá Mß whenever a ^ ß; hence [Ma: a E C)

is an uncountable collection of nonisomorphic countable models of <f>, show-

ing that <j> is large. This completes the proof of Theorem 5.

An equivalent formulation of Theorem 5 says that, for a minimal coun-

terexample a, TA is consistent even for uncountable fragments A, in particular

for A = LUiU.

The model N constructed in the proof of Theorem 5 has the further

property that each finite sequence of it satisfies a minimal formula. This

implies that N has Scott height w, (the Scott height of a structure is the first a

such that for all finite sequences a of elements of N, N ^= Vx(<i>£(x)-»

(f>a +l(x)) where <}>£ is the Lxu formula defined as in Chapter 2 of [4], without

the restriction a < ux). Independently, Leo Harrington showed the stronger

result that every counterexample has uncountable models of arbitrarily large

Scott heights a < u2 (unpublished).

The second author of the present paper showed [5] that every counter-

example has an uncountable model which is L^-equivalent to a countable

one.
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In a somewhat different context, we wish now to point out that the same

tree argument that went into the proof of Theorem 1 can be used to replace

Burgess' use in [1] of forcing in the deduction of his result on 2¡ equivalence

relations from Silver's theorem on n¡ equivalence relation [10] (cf. also [3]).

By an equivalence relation E we mean one defined between countable

L-structures which is weaker than isomorphism, i.e., if M ss N then M(E)N.

Let L be the (two sorted) language corresponding to the naturally defined

disjoint sum M © A of any two L-structures M, N. The equivalence relation

E is Borel (resp. 2¡) if for some a G L'a¡a (resp. a(P) G L'(P)U¡U), M(E)N iff

M ® N\= a (M 0 A (= 3Po(P)). The following is an observation of

Burgess:

Claim 6. Every 2j equivalence relation is the intersection of N, Borel

equivalence relations.

Sketch of a model-theoretic proof. By Vaught [11] (see also [6]), there are

L'a u sentences </>„, a < ux, such that on countable structures 3Po(P) is

equivalent to A0<Ul</V Set M(Ea)N if f M © N (= <j>a. The claim will follow

if we show that Ea is an equivalence relation whenever a is an (admissible)

ordinal such that a(P) is & -finite for some admissible set with ords = a. But

this is easily established using the existence of Sg-saturated models, as well as

the fact that, in any ^saturated structure, <ba (= /\ß<a<Pß) is equivalent to

3Pa(P) (cf. Corollary 7.3 and the proof of 8.1 in [6]; the notion of 2a-

saturated structure comes from [9]).

Using Claim 6 and a forcing argument, Burgess deduced from Silver's

aforementioned theorem that any Sj equivalence relation has < x, or 2"°

equivalence classes. This result follows from the following.

Theorem 7. Assume that N0 < k < 2"°. // E is the intersection of k many

Borel equivalence relations then E has < k or 2"° many equivalence classes.

Proof. Let E = n a<KEa, each Ea a Borel equivalence relation; as is well

known and easily seen, every equivalence class of any Ea is also Borel, i.e.

definable by an L,,,, sentence.

Assume that E has < 2"° equivalence classes. Then the same is true for each

Ea and by (a weakened version of) Silver's theorem, Ea has < «0 equivalence

classes. For every equivalence class X of any Ea, a < k, select an LMU

sentence defining it; collect all these sentences into a set ¥. The properties of

^ are summed up as follows:

0) 1*1 < «;
(ii) each \p E ^ is E-invariant, i.e., M(= i/< and M(E)N imply that A(= \p;

and

(iii) ^ distinguishes between the equivalence classes of E; i.e. if -\M(E)N,

then for some x¡/ E ¥, M |= $ and N   \= -| \p.

Assume next, for proof by contradiction, that E has > k equivalence

classes. For <|> G Luu, let G^ be the set of equivalence classes of E having a

nonempty intersection with Mod(<i>). Call o large iff Qa has power > k. A
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simple counting argument shows:

Claim 8. For every large a there is \p E ^ s.t. both o A 'I' and o A ~| ^ are

large.

Proof. Let T be the set of those sentences y which belong to ¥ or are

negations of members of ^ s.t. a /\y is not large. Then

e0=U{eaAy:yET}u n{(Wyer}.

If the claim is false, then the second term of the union is easily seen, by (hi)

above, to contain just one element. Thus, by (i), |6„| < k, contradicting the

largeness of a.

Now, using Claim 8, one constructs precisely as in the proof of Theorem 1,

a tree 7;, s E<"2 s.t. for all s:

(a) Ts is finite, a E Ts and /\TS is large;

(b) there is \p E ^ s.t. \L E TsA<0y and -jt// E rjA<1>, and such that for all

r, E"2, r„ - U n<aTMn has a model Mr By (ii) and (b) above, ^M^M^.

whenever tj ^ i)'. Thus E has 2"° equivalence classes, a contradiction.

We conclude by indicating a most natural example of a relation which is

the intersection of K, Borel equivalence relations. If K is the class of

countable members of a PCU class, define: M(E)N iff M, N E K or

M ss N. Again by [11], K = n„<U|K„ where each K0 is Borel. Define:

M(Ea)N iff M, N E K„ or M =a N (where =a means equivalence w.r.t.

Lu¡u sentences with quantifier rank < a). Obviously, E = f) a<a Ea and each

Ea is Borel. Thus, Theorem 7 implies Morley's result [7] that any PCU a class

has < N, or 2"° countable nonisomorphic models. (Actually, Morley's proof

contains an argument showing that the particular E0 defined above satisfies

Silver's theorem.)

Added May 30, 1977. In [12], John Burgess proves a theorem which is

more general than our Theorem 7. Burgess' proof is forcing-free as well. We

are indebted to the referee for this information.
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