A TREE ARGUMENT IN INFINITARY MODEL THEORY¹

V. HARNIK AND M. MAKKAI

ABSTRACT. A tree argument is used to show that any counterexample to Vaught's conjecture must have an uncountable model. A similar argument replaces the use of forcing by Burgess in a theorem on Σ^1_1 equivalence relations.

A formula or a sentence is one of $L_{\omega,\omega}$. A sentence ϕ is a counterexample to Vaught's conjecture or, simply, a counterexample if it has more than \aleph_0 but less than 2^{\aleph_0} nonisomorphic countable models. A sentence is large if it has more than \aleph_0 nonisomorphic countable models. A large sentence is minimal if for every sentence ψ , either $\phi \wedge \psi$ or $\phi \wedge \neg \psi$ is not large.

THEOREM 1. Every counterexample can be strengthened to a minimal counterexample, i.e., if σ is a counterexample, then there is a minimal counterexample ϕ such that $\phi \models \sigma$.

The proof of Theorem 1 uses a lemma due to Morley [8], whose formulation depends on the following (stronger than usual) notion of *fragment*. A set of formulas Δ is a fragment if it is closed under subformulas, substitutions of terms, finitary logical operations and if it satisfies: whenever $\phi \in \Delta$, $\bigvee \Theta \in \Delta$ (where $\Theta \subset \Delta$), then $\bigvee \{\exists x\theta \colon \theta \in \Theta\}$, $\bigvee \{\phi \land \theta \colon \theta \in \Theta\}$, $\bigvee \{\phi\} \cup \Theta$) all belong to Δ .

LEMMA 2 [8]. Let Δ be a countable fragment. If $T \subset \Delta$ is a finitely consistent set of sentences such that for all valid $\bigvee \Theta \in \Delta$ there is a $\theta \in \Theta$ which belongs to T, then T is consistent.

PROOF OF THEOREM 1. Assume that the theorem is false for some σ . Then it is easily seen that there is a countable fragment Δ containing σ and such that for every large $\phi \in \Delta$ s.t. $\phi \models \sigma$, there is $\psi \in \Delta$ with both $\phi \land \psi$ and $\phi \land \neg \psi$ large. Let $\{\delta_n\}_{n < \omega}$ be an enumeration of all valid disjunctions belonging to Δ . We are going to define a tree T_s , $s \in {}^{<\omega} 2$ (= the set of finite sequences of 0's and 1's) such that for all s:

- (a) T_s is a finite subset of Δ , $\sigma \in T_s$ and $\bigwedge T_s$ is a large sentence;
- (b) $T_{s \land \langle 0 \rangle}$ and $T_{s \land \langle 1 \rangle}$ are contradictory; and
- (c) if $\ln s = i$ and $\delta_i = \bigvee \Theta$ then there are θ' , $\theta'' \in \Theta$ s.t. $\theta' \in T_{s \wedge \langle 0 \rangle}$ and $\theta'' \in T_{s \wedge \langle 1 \rangle}$.

Received by the editors April 6, 1977.

AMS (MOS) subject classifications (1970). Primary 02B25.

¹Research partially supported by the National Research Council of Canada.

Once the tree is constructed, consider, for each $\eta \in {}^{\omega}2$ (= the set of infinite sequences of 0's and 1's), the set $T_{\eta} = \bigcup \{T_{\eta \upharpoonright i} : i < \omega\}$. By (a), (c) and Lemma 2, each T_{η} is consistent, hence has a countable model M_{η} (which, by (a), is a model of σ); by (b), if $\eta \neq \eta'$ then $M_{\eta} \not= M_{\eta'}$. Hence $\{M_{\eta} : \eta \in {}^{\omega}2\}$ is a collection of 2^{\aleph_0} nonisomorphic countable models of σ , a contradiction to the assumption that σ is a counterexample.

Thus, to conclude the proof, we have to indicate how to get T_s . This is done by induction on the length of s. Take $T_{<>} = \{\sigma\}$. Assume that T_s has been defined and $\ln s = i$. As $\bigwedge T_s \in \Delta$ is large and implies σ , there is $\psi \in \Delta$ s.t. both $\bigwedge T_s \wedge \psi$ and $\bigwedge T_s \wedge \neg \psi$ are large. If $\delta_i = \bigvee \Theta$ then any of the uncountably many models of $\bigwedge T_s \wedge \psi \ (\bigwedge T_s \wedge \neg \psi)$ is a model of some $\bigwedge T_s \wedge \psi \wedge \theta \ (\bigwedge T_s \wedge \neg \psi \wedge \theta)$, with $\theta \in \Theta$. Thus, there is $\theta' \in \Theta \ (\theta'' \in \Theta)$ s.t. $\bigwedge T_s \wedge \Psi \wedge \theta' \ (\bigwedge T_s \wedge \neg \psi \wedge \theta'')$ is large. Take $T_s \wedge (0) = T_s \cup \{\psi, \theta'\}$ and $T_s \wedge (1) = T_s \cup \{\neg \psi, \theta''\}$.

The proof of Theorem 1 is now complete.

Given a counterexample σ , call a formula $\phi(x)$ with free variables x (x a finite sequence) large (with respect to σ) if $\sigma \wedge \exists x \phi(x)$ is large. Call $\phi(x)$ minimal (w.r.t. σ) if for all $\psi(x)$, $\phi \wedge \psi$ or $\phi \wedge \neg \psi$ is not large. Theorem 1 yields

COROLLARY 3. Every large (w.r.t. a given counterexample σ) formula $\phi(x)$ can be strengthened to a minimal formula.

PROOF. Notice that $\phi(\mathbf{x})$ is large iff $\sigma \wedge \phi(\mathbf{c})$ (a sentence in the larger language $L(\mathbf{c})$ with \mathbf{c} a sequence of new constants) is a counterexample and that $\phi(\mathbf{x})$ is minimal w.r.t. σ iff $\sigma \wedge \phi(\mathbf{c})$ is a minimal counterexample. Now, the assertion follows from Theorem 1.

Now assume that σ is a minimal counterexample. For any fragment Δ containing σ , define $T_{\Delta} = \{\phi \colon \phi \in \Delta \text{ and } \phi \land \sigma \text{ is large}\}$. If Δ is countable then, by the minimality of σ , T_{Δ} is consistent (all but countably many of the countable models of σ are models of T_{Δ}) and Δ -complete. A formula $\psi(\mathbf{x}) \in \Delta$ is consistent with T_{Δ} iff it is large. This observation easily yields

LEMMA 4. If $\phi(\mathbf{x})$ is minimal, then for all countable Δ , if $\phi \in \Delta$ then ϕ is complete (in Δ) with respect to T_{Δ} (cf. the definition on p. 61 of [4]).

Call a fragment Δ closed if for every large $\phi(\mathbf{x}) \in \Delta$ there is a minimal formula $\phi'(\mathbf{x}) \in \Delta$ s.t. $\models \phi' \to \phi$. By Corollary 3, every countable fragment can be enlarged to a closed one. If Δ is countable and closed then, by Lemma 4 and the definition of T_{Δ} , there are no incompletable formulas $\psi(\mathbf{x})$ with respect to T_{Δ} . Hence, T_{Δ} has a prime model (cf. [4, pp. 61–64, especially Theorem 16]). Moreover, it is easily seen that if Δ is closed then a formula $\phi \in \Delta$ is complete w.r.t. T_{Δ} iff it is minimal. Hence, each finite sequence of elements in the prime model of T_{Δ} satisfies a minimal formula belonging to Δ .

As an application, we can now prove the following result (announced in [2]).

THEOREM 5. If σ is a counterexample then it has an uncountable model N. Moreover, N can be so chosen as to satisfy only large sentences; thus, N is not $L_{\infty\omega}$ equivalent to any countable structure.

PROOF. By Theorem 1, we may assume that σ is minimal. We define by induction an increasing chain of countable fragments Δ_{α} , and of countable structures M_{α} , $\alpha < \omega$, s.t.:

- (i) $\sigma \in \Delta_{\alpha}$, and Δ_{α} is closed.
- (ii) M_{α} is the prime model of T_{Δ} .
- (iii) $M_{\alpha} \neq M_{\alpha+1}$, $M_{\alpha} \prec_{\Delta_{\alpha}} M_{\alpha+1}$ and $M_{\lambda} = \bigcup_{\alpha < \lambda} M_{\alpha}$ for a limit λ .

Once this is done, we shall take $N = \bigcup_{\alpha < \omega_1} M_{\alpha}$.

The inductive definition goes as follows:

Assume that Δ_{α} and M_{α} are defined.

Let $\Delta_{\alpha+1} \supset \Delta_{\alpha}$ be a closed fragment which contains a Scott sentence ϕ of M_{α} (cf. Chapter 2 in [4]). Let $M_{\alpha+1}$ be the prime model of $T_{\Delta_{\alpha+1}}$. As $M_{\alpha+1} \models T_{\Delta_{\alpha}} (\subset T_{\Delta_{\alpha+1}})$ and M_{α} is a prime model of $T_{\Delta_{\alpha}}$, M_{α} can be embedded in $M_{\alpha+1}$. Thus, we may take $M_{\alpha} \prec_{\Delta_{\alpha}} M_{\alpha+1}$. As the Scott sentence ϕ of M_{α} is obviously not large, $\phi \notin T_{\Delta_{\alpha+1}}$, hence $M_{\alpha+1} \models \neg \phi$. This shows that $M_{\alpha} \not\cong M_{\alpha+1}$, hence, $M_{\alpha} \neq M_{\alpha+1}$.

For a limit λ , take $\Delta_{\lambda} = \bigcup_{\alpha < \lambda} \Delta_{\alpha}$ and $M_{\lambda} = \bigcup_{\alpha \in \lambda} M_{\alpha}$. Then Δ_{λ} is obviously closed and every finite sequence of elements of M_{λ} satisfies a minimal, hence by Lemma 4, complete (w.r.t. $T_{\Delta_{\lambda}}$) formula. It follows (again by Theorem 16 in [4]) that M_{λ} is the prime model of T_{Δ} .

As said before, we take $N = \bigcup_{\alpha < \omega_1} M_{\alpha}$ to get an uncountable model of σ . If $N \models \phi$ then there is a closed and unbounded set $C \subset \omega_1$ s.t. $M_{\alpha} \models \phi$ for all $\alpha \in C$. By construction, $M_{\alpha} \not\cong M_{\beta}$ whenever $\alpha \neq \beta$; hence $\{M_{\alpha} : \alpha \in C\}$ is an uncountable collection of nonisomorphic countable models of ϕ , showing that ϕ is large. This completes the proof of Theorem 5.

An equivalent formulation of Theorem 5 says that, for a minimal counterexample σ , T_{Δ} is consistent even for uncountable fragments Δ , in particular for $\Delta = L_{\omega,\omega}$.

The model N constructed in the proof of Theorem 5 has the further property that each finite sequence of it satisfies a minimal formula. This implies that N has Scott height ω_1 (the Scott height of a structure is the first α such that for all finite sequences \mathbf{a} of elements of N, $N \models \forall \mathbf{x} (\phi_{\mathbf{a}}^{\alpha}(\mathbf{x}) \rightarrow \phi_{\mathbf{a}}^{\alpha+1}(\mathbf{x}))$ where $\phi_{\mathbf{a}}^{\alpha}$ is the $L_{\infty\omega}$ formula defined as in Chapter 2 of [4], without the restriction $\alpha < \omega_1$). Independently, Leo Harrington showed the stronger result that every counterexample has uncountable models of arbitrarily large Scott heights $\alpha < \omega_2$ (unpublished).

The second author of the present paper showed [5] that every counter-example has an uncountable model which is $L_{\infty\omega}$ -equivalent to a countable one.

In a somewhat different context, we wish now to point out that the same tree argument that went into the proof of Theorem 1 can be used to replace Burgess' use in [1] of forcing in the deduction of his result on Σ_1^1 equivalence relations from Silver's theorem on Π_1^1 equivalence relation [10] (cf. also [3]).

By an equivalence relation E we mean one defined between countable L-structures which is weaker than isomorphism, i.e., if $M \cong N$ then M(E)N. Let L' be the (two sorted) language corresponding to the naturally defined disjoint sum $M \oplus N$ of any two L-structures M, N. The equivalence relation E is Borel (resp. Σ_1^1) if for some $\sigma \in L'_{\omega_1\omega}$ (resp. $\sigma(P) \in L'(P)_{\omega_1\omega}$), M(E)N iff $M \oplus N \models \sigma$ ($M \oplus N \models \exists P\sigma(P)$). The following is an observation of Burgess:

Claim 6. Every Σ_1^1 equivalence relation is the intersection of \aleph_1 Borel equivalence relations.

Sketch of a model-theoretic proof. By Vaught [11] (see also [6]), there are $L'_{\omega_1\omega}$ sentences ϕ_{α} , $\alpha < \omega_1$, such that on countable structures $\exists \mathbf{P}\sigma(\mathbf{P})$ is equivalent to $\bigwedge_{\alpha < \omega_1} \phi_{\alpha}$. Set $M(E_{\alpha})N$ iff $M \oplus N \models \phi_{\alpha}$. The claim will follow if we show that E_{α} is an equivalence relation whenever α is an (admissible) ordinal such that $\sigma(\mathbf{P})$ is \mathscr{C} -finite for some admissible set with $\operatorname{ord}_{\mathscr{C}} = \alpha$. But this is easily established using the existence of $\Sigma_{\mathscr{C}}$ -saturated models, as well as the fact that, in any $\Sigma_{\mathscr{C}}$ -saturated structure, ϕ_{α} (= $\bigwedge_{\beta < \alpha} \phi_{\beta}$) is equivalent to $\exists \mathbf{P}\sigma(\mathbf{P})$ (cf. Corollary 7.3 and the proof of 8.1 in [6]; the notion of $\Sigma_{\mathscr{C}}$ -saturated structure comes from [9]).

Using Claim 6 and a forcing argument, Burgess deduced from Silver's aforementioned theorem that any Σ_1^1 equivalence relation has $< \aleph_1$ or 2^{\aleph_0} equivalence classes. This result follows from the following.

THEOREM 7. Assume that $\aleph_0 < \kappa < 2^{\aleph_0}$. If E is the intersection of κ many Borel equivalence relations then E has $\leq \kappa$ or 2^{\aleph_0} many equivalence classes.

Proof. Let $E = \bigcap_{\alpha < \kappa} E_{\alpha}$, each E_{α} a Borel equivalence relation; as is well known and easily seen, every equivalence class of any E_{α} is also Borel, i.e. definable by an $L_{\omega,\omega}$ sentence.

Assume that E has $< 2^{\aleph_0}$ equivalence classes. Then the same is true for each E_{α} and by (a weakened version of) Silver's theorem, E_{α} has $\leq \aleph_0$ equivalence classes. For every equivalence class X of any E_{α} , $\alpha < \kappa$, select an $L_{\omega_1\omega}$ sentence defining it; collect all these sentences into a set Ψ . The properties of Ψ are summed up as follows:

- (i) $|\Psi| \leq \kappa$;
- (ii) each $\psi \in \Psi$ is E-invariant, i.e., $M \models \psi$ and M(E)N imply that $N \models \psi$; and
- (iii) Ψ distinguishes between the equivalence classes of E; i.e. if $\neg M(E)N$, then for some $\psi \in \Psi$, $M \models \psi$ and $N \models \neg \psi$.

Assume next, for proof by contradiction, that E has $> \kappa$ equivalence classes. For $\phi \in L_{\omega,\omega}$, let \mathcal{C}_{ϕ} be the set of equivalence classes of E having a nonempty intersection with $\operatorname{Mod}(\phi)$. Call σ large iff \mathcal{C}_{σ} has power $> \kappa$. A

simple counting argument shows:

Claim 8. For every large σ there is $\psi \in \Psi$ s.t. both $\sigma \wedge \psi$ and $\sigma \wedge \neg \psi$ are large.

PROOF. Let Γ be the set of those sentences γ which belong to Ψ or are negations of members of Ψ s.t. $\sigma \wedge \gamma$ is not large. Then

$$\mathcal{C}_{\alpha} = \bigcup \{\mathcal{C}_{\alpha \wedge \gamma} : \gamma \in \Gamma\} \cup \bigcap \{\mathcal{C}_{\alpha \wedge \gamma \gamma} : \gamma \in \Gamma\}.$$

If the claim is false, then the second term of the union is easily seen, by (iii) above, to contain just one element. Thus, by (i), $|\mathcal{C}_{\sigma}| \leq \kappa$, contradicting the largeness of σ .

Now, using Claim 8, one constructs precisely as in the proof of Theorem 1, a tree T_s , $s \in {}^{<\omega} 2$ s.t. for all s:

- (a) T_s is finite, $\sigma \in T_s$ and $\bigwedge T_s$ is large;
- (b) there is $\psi \in \Psi$ s.t. $\psi \in T_{s \wedge \langle 0 \rangle}$ and $\neg \psi \in T_{s \wedge \langle 1 \rangle}$, and such that for all $\eta \in {}^{\omega}2$, $T_{\eta} = \bigcup_{n < \omega} T_{\eta \upharpoonright n}$ has a model M_{η} . By (ii) and (b) above, $\neg M_{\eta}(E)M_{\eta'}$ whenever $\eta \neq \eta'$. Thus E has 2^{\aleph_0} equivalence classes, a contradiction.

We conclude by indicating a most natural example of a relation which is the intersection of \aleph_1 Borel equivalence relations. If K is the class of countable members of a $PC_{\omega_1\omega}$ class, define: M(E)N iff $M, N \notin K$ or $M \cong N$. Again by [11], $K = \bigcap_{\alpha < \omega_1} K_{\alpha}$ where each K_{α} is Borel. Define: $M(E_{\alpha})N$ iff $M, N \notin K_{\alpha}$ or $M \equiv_{\alpha} N$ (where \equiv_{α} means equivalence w.r.t. $L_{\omega_1\omega}$ sentences with quantifier rank $\leqslant \alpha$). Obviously, $E = \bigcap_{\alpha < \omega_1} E_{\alpha}$ and each E_{α} is Borel. Thus, Theorem 7 implies Morley's result [7] that any $PC_{\omega_1\omega}$ class has $\leqslant \aleph_1$ or 2^{\aleph_0} countable nonisomorphic models. (Actually, Morley's proof contains an argument showing that the particular E_{α} defined above satisfies Silver's theorem.)

ADDED MAY 30, 1977. In [12], John Burgess proves a theorem which is more general than our Theorem 7. Burgess' proof is forcing-free as well. We are indebted to the referee for this information.

REFERENCES

- 1. J. P. Burgess, Infinitary languages and descriptive set theory, Ph. D. Thesis, Univ. of California, Berkeley, 1974.
- 2. V. Harnik and M. Makkai, Some remarks on Vaught's conjecture, J. Symbolic Logic 40 (1975), 300-301 (abstract).
 - 3. L. Harrington, A powerless proof of a theorem of Silver (manuscript).
 - 4. H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.
- 5. M. Makkai, An "admissible" generalization of a theorem on countable Σ_1^1 sets of reals with applications, Ann. of Math. Logic 11 (1977), 1-30.
- 6. _____, Admissible sets and infinitary logic, Handbook of Logic (J. K. Barwise, editor), North-Holland, Amsterdam, 1977.
 - 7. M. Morley, The number of countable models, J. Symbolic Logic 35 (1970), 14-18.
- 8. _____, Applications of topology to $L_{\omega_1\omega}$, Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R. I., 1973, pp. 233–240.
- 9. J.-P. Ressayre, Models with compactness properties with respect to logics on admissible sets, Ann. of Math. Logic 11 (1977), 31-55.
- 10. J. Silver, Any Π_1^1 equivalence relation over 2^{ω} has either 2^{\aleph_0} or $< \aleph_0$ equivalence classes (manuscript).

- 11. R. Vaught, Descriptive set theory in $L_{\omega_1\omega}$, Lecture Notes in Math., vol. 337, Springer-Verlag, Berlin and New York, 1973, pp. 574–598.
- 12. J. P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, HAIFA, ISRAEL

DEPARTMENT OF MATHEMATICS, McGILL UNIVERSITY, MONTREAL, QUEBEC, CANADA