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ON ORDINALLY CLOSED SETS

JOHN C. MORGAN II

Abstract. Extensions of Cantor's Intersection Theorem and Zalcwasser's

theorem on transfinite sequences of ambiguous sets of the first Baire class

are given for linear sets.

All sets considered in this article are assumed to be subsets of the real line

X. The symbol « denotes the first infinite ordinal number and ß denotes the

first uncountable ordinal number.

1. Descending sequences of sets. Let F0 d F, d . . . D EnD . . . be a

descending sequence of subsets of X. If each En is a bounded, closed interval,

then, as shown by Cantor, the intersection of the sets is nonempty. The

conclusion continues to hold if the sets are only assumed to be nonempty

compact sets. This latter fact, although commonly referred to as the Cantor

Intersection Theorem, appears to have been first established by R. Baire (see

[1, p. 48], and [4, p. 127]).

In [5] (see p. 14), an extension of Cantor's theorem for intervals was given

where the sets are only assumed to have the same order type as a bounded,

closed interval; i.e., which have the order type 1 + X + 1, where X denotes the

order type of the real line X.

Upon modification of the proof in [5], we obtain in this section a further

extension which contains all three of the preceding results.

Definition 1. A set F is called ordinally closed if F is order isomorphic to

a closed set, and is called ordinally compact if it is order isomorphic to a

compact set.

Equivalently, E is ordinally closed if and only if E, with the relativized

ordering of X, is a conditionally complete lattice; and F is ordinally compact

if and only if, in the relativized ordering, F is a complete lattice.

For a discussion of ordinally closed sets, see [2, pp. 128-136], [11, pp.

132-134], and [3, pp. 17-43] (especially Théorème V, p. 42, which establishes

the fact that a complete lattice F in A1 is an ordinally compact set).

Theorem 1. The intersection of a descending sequence (Fn)n<u of nonempty

ordinally compact sets is nonempty.
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Proof. Assuming the conclusion does not hold, we shall establish the

existence of a subset {aß: ß < ß} of the real line with order type ß.

For each n < u, set an = inf En. The sequence <a„>n<(0 is then monotone

increasing and has infinitely many distinct terms.

For simplicity, assume 0 is a limit ordinal and proceed by transfinite

induction on the set of all countable limit ordinals. Let ß be a countable limit

ordinal and suppose for all limit ordinals £ < ß, a monotone increasing

sequence <a{+„>„<„ containing infinitely many distinct terms has been

defined with ai+„ E E„ for all n and ay < a¿ for all y < £.

There is an increasing sequence <£,>„<„ °f ordinal numbers such that

ß = sup„£,, <a¿>n<u is a monotone increasing sequence with infinitely many

distinct terms, and a^ E En for each n. For, if there is a largest limit ordinal

y < ß, then the desired sequence can be obtained upon setting £„ = y + n.

Otherwise, there is an increasing sequence <yn)n<u of limit ordinals with

ß = SUP„Y„ and we set £„ = y„ + n.

For each n there is a smallest element aß+„ E E„ such that a^ < aß+„ for

all m < w. Hence the sequence (aß+n)„<u is monotone increasing with

infinitely many distinct terms, aß+n E En for all n < w, and ay < aß for all

ordinal numbers y < ß.

Thus is defined by transfinite induction a subset {aß: ß < ß) of the real

line with order type ß. But the real line has no subset of order type ß!

Therefore, the intersection of the sets £„ is nonempty.

2. Stationary sequences of sets. In this section we extend a theorem of

Zalcwasser [12] on stationary transfinite sequences of ambiguous sets of the

first Baire class; i.e., sets which are simultaneously Sg-sets and 5"0-sets.

Definition 2. A transfinite sequence (Ea}a<a of sets is stationary if there

is an ordinal number y < ß such that Ea = Ey for all a > y.

Theorem 2. // (Ea}a<a is an ascending or descending transfinite sequence of

sets such that for each a < ß, both Ea and its complement are representable as

countable unions of ordinally closed sets, then the sequence is stationary.

Proof. We shall apply the reasoning of Zalcwasser, with certain modi-

fications.

Assume (,Ea}a<a is an ascending transfinite sequence of distinct sets of the

stated form. The sets Ra = Ea + X — Ea, for a < ß, are then nonempty disjoint

sets and we form a set T = {ta: a < ß} by choosing a single point ta from

each set Ra.

The set P of all condensation points in X of the uncountable set T is a

perfect set and each point of P is a condensation point of T n P. Let D be a

denumera'oie subset of T n P which is dense in T n P, hence also dense in

P, and which consists of bilateral limit points (i.e., points which are limit

points both from the left and from the right) of T n P; say D = [t : n < w

& an < ß}.

Denoting by p the smallest ordinal number > a„ for each n, we then have
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D e Er We shall show that both P n £„ and P - FM are of the first

category in P, which yields the contradiction that the perfect set P = (P n

Fu) U (P - FM) is of the first category in itself!

By hypothesis, E^ = U m<uAm and X - E^ = U m<uBm, where the sets Am

and Bm are ordinally closed for all m < w. Hence P n FM = U m<u(P n

4J and P - £■„ - Um<w(PnÄJ.
We first show each of the sets P n Am is nowhere dense in P. Suppose / is

any open interval with I n P ¥= 0. The set P - E^ contains all but at most

countably many points of the set T' = {ty: y > /x}, and each point of P is a

condensation point of Tp; consequently, there is an ordinal number a > ¡u

such that ta G / n (P - F ) and ta can also be chosen to be a condensation

point of T^ from both the left and the right. From the inclusion, P - E C P

— .<4m, we know ra G ^4m and, ^4m being ordinally closed, there is an open

interval J, one of whose endpoints is ta, which is disjoint from Am. Therefore

K = / n J is an open subinterval oi I, K n P ¥= 0, and K n (P n ^m) =

0. Thus P n >4m is nowhere dense in P.

Next we show P n Bmis nowhere dense in P for each m < a. Suppose / is

any open interval such that / n P ¥= 0- The set D being dense in P, there is

a point r^ G /. Since P n Bm c P - FM and t^ & P - E^, we have r^ G

fim. Hence there is an open subinterval J of /, having t as an endpoint, such

that / n Bm = 0. Since / n P ^ 0 and J C\ (P C\ Bm) = 0, we conclude

P n -Sm is nowhere dense in P.

By virtue of the contradiction we now obtain, the theorem is true for

ascending transfinite sequences.

The case where <Fa>a<n is a descending transfinite sequence is obtained

from the preceding by complementation.

Corollary. Every ascending or descending transfinite sequence of ordinally

closed sets is stationary.

Proof. The complement of an ordinally closed set is expressible as a

countable union of closed intervals.

As noted by Zalcwasser, his theorem cannot be generalized to arbitrary

êA-sets (cf. [9], [10]). Theorem 2 does, however, provide a proper extension of

his theorem, because there are ordinally closed §s-sets which are not ?F„-sets;

the Cantor set minus its left endpoints \, \, |, ^, ^, |f, ff,... is one

such set.

3. Monotone families of sets. A generalization of the Cantor-Baire Inter-

section Theorem, due to F. Riesz [6, p. 21, footnote], reads: If 911 is a

nonempty family of compact sets with the property that every finite

subfamily of 9H has a nonempty intersection, then 9H has a nonempty

intersection.

It is not possible to extend Riesz' theorem to ordinally compact sets, as

may be seen upon taking 9H to consist of the sequence of sets An = {x: n/(n

+ 1) < x < 1} u {n + l],n < u.
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In this section we shall, however, extend to ordinally compact sets a

corollary of Riesz' theorem which states: If 911 is a monotone family of

nonempty compact sets, then there is at least one point in common with all

the sets in 9H. This corollary, which also provides a generalization of the

Cantor-Baire Intersection Theorem, was discovered, independently of Riesz,

by W. Sierpiñski (see [7]). Riesz' theorem itself was also rediscovered by

Sierpiñski (see [8]).

Definition 3. A nonempty family 911 of sets is called monotone if for each

pair A, B of sets in 911, either A c B or B c A.

Theorem 3. If 911 is a monotone family of nonempty ordinally compact sets,

then the intersection of 911 is nonempty.

Proof. Assume the theorem is false. Then 9H, ordered by set-theoretical

inclusion, contains no smallest set.

Let 0 be the smallest ordinal number of power equal to that of 9H and let

(1) A0,Ax,...,Aa,...,        a<0,

be a well-ordering of 911. We shall define by transfinite induction a descen-

ding transfinite sequence

(2) E0,Ex,...,Ea,...,        a < ß,

of distinct sets in 9H.

Set E0 = A0. Suppose a < ß and the sets EB have been defined for each

ordinal number ß < a.

If a is a successor ordinal, say a = y + 1, then we define Ea to be the first

set in (1) which is a proper subset of Ey.

If a is a limit ordinal, then we first select a denumerable subfamily

{Eßn: n < u}, with ß0 < ßx < • ■ • < ß„ < ■ ■ ■ , from the sets already

defined so that a = sup„/?„ and, hence, fl^^ = C\ß<aEB. We know by

Theorem 1 that <1 ß<aEß ^ 0 and, since 911 is monotone with fl 911 = 0,

there must be a set A G 911 such that A c Eß for all ß < a. We define Ea to

be the first such set in (1).

Proceeding in this manner, we obtain the transfinite sequence (2), the

existence of which contradicts the corollary to Theorem 2.
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