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NEAR COMPACTNESS AND SEPARABILITY

OF SYMMETRIZABLE SPACES

R. M. STEPHENSON, JR.

Abstract. Although every feebly compact, Baire, semimetrizable space is

separable, we prove here that for every infinite cardinal number n there

exists a feebly compact, Baire, symmetrizable Hausdorff space which has no

dense subset of cardinality less than n.

For a topological space X, a mapping d: X xJi-^[0, oo) is said to be a

symmetric provided that: (i) for all x,y E X, d(x,y) = d(y, x), and d(x,y)

= 0 if and only if x = y ; and (ii) for any subset V of X, V is open if and only

if for each point v E V there exists e > 0 with B(v, e) = {x E X: d(x, v) <

e) c V. If, in addition, each B(x, e), x E X, e > 0, is a neighborhood of x,

then d is called a semimetric. A space X which has a symmetric (semimetric)

is said to be symmetrizable (semimetrizable).

A. V. Arhangel'skii [A, p. 126] proved that every countably compact

symmetrizable Hausdorff space is metrizable, and in [SI] and [S2] properties

of symmetrizable feebly compact spaces were studied (recall that a space X is

said to be feebly compact if every locally finite family of open subsets of X is

finite). Of particular interest there was the question: Is every feebly compact

symmetrizable space separable"] Proofs were given in [SI] that every feebly

compact symmetrizable space having a dense set of isolated points is

separable, and in [S2, Theorem 10] that every feebly compact, Baire, semi-

metrizable space is separable. The latter extended Reed's theorem [R] that

every Moore-closed space is separable, for a Moore-closed space is regular

and feebly compact [G], and a regular, feebly compact space is Baire [M].

In this paper, a modification of a very nice technique developed in [DGN,

Example 3.1] is used to settle the question in the negative, and we obtain the

following surprising result.

Theorem. Let n be an infinite cardinal number. Then there exists a Baire,

feebly compact, symmetrizable Hausdorff space X such that no dense subset of X

has cardinality less than m = n^0.

Proof. Let y be a metrizable Baire space such that | V\ = m for every

nonempty open subset V of Y, and |D| = m for any dense subset D of Y. Let

d' be a metric for Y, % a base for Y with \%\ = m, and C be the family of all
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countably infinite,  pairwise disjoint,  locally finite families of nonempty

members of ÍB.

List the members of the collection C as C = {Qk: k < m) and list the

members of each Qk in a 1-1 manner as Qk = {Cky. j EN). Since each

\Ckj\ = m, one can by transfinite induction select points skj E CkJ, where

k < m and/ G N, so that whenever i,k E m and i ¥= k, then

{su:jEN}n{skJ:jEN} = 0.

Let X = Y u m and extend d' to a symmetric d on X by the rule

d(x,y) = d(y,x) =

0 if x = y ;

¿/'(^J7) if x,y E X;

l/j if x = k andy = skJ; and

1 otherwise.

Next, let X have the topology induced on it by d.

Before verifying that X is Hausdorff, observe that for each point y G Y,

one has y = sk, for at most one pair k, j, so for each y E Y there exists

e(y) > 0 with B(y, e(y)) c Y. Thus {/30>, e): 0 < e < e(>-)} is a funda-

mental system of open neighborhoods of y in X. For a point k < m, a

fundamental system of open neighborhoods is the family of all sets having the

form

{k} u (U {B(skJ,fj): 0<fj< e(skJ), t < /}),

where / G N and /is a sequence of real numbers, they'th term of which is fj.

Consider distinct points x and y in X. If both are in the metrizable open

subset Y, then disjoint neighborhoods can certainly be found. Suppose

x = k < m and y E Y. For some t E N, {y) and {sk : / > i} are disjoint

closed subsets of Y (since (3¿ is locally finite in Y and pairwise disjoint), so

there exist disjoint open subsets U and V oí Y with y E U and (j^:

/ > t) E V. Thus, U and K u {&} are disjoint neighborhoods of y and x. If

x = k andy = r with k, r < m, then one can (again) appeal to the normality

of Y and topology on X to find disjoint open sets containing {k} u {^:

/ e N} and {/•} U {^/yGN}.

Because y fe a dense, Baire subspace of X, the space A' must also be Baire.

Since Y is an open subspace having no dense subset of cardinality less than

m, then X has no dense subset of cardinality less than m.

Finally, suppose that T is an infinite family of open subsets of X. We will

prove that °Y fails to be locally finite.

Suppose, on the contrary, that °V is locally finite. Since Y is dense in X, one

can find a countably infinite pairwise disjoint family % of members of %

and a 1-1 mapping/: % -» T such that for each W E %, one has W c

/( W7). Evidently any point at which 'W fails to be locally finite must also be a

point at which T fails to be locally finite. Thus % is locally finite with

respect to Y, and hence % = Gk for some k < m. But clearly 6^ fails to be
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locally finite at the point k, so we have a contradiction.

Remarks, (i) I do not know if every regular, feebly compact symmetrizable

space is separable. Since a G6-point in a regular, feebly compact space must

have a countable neighborhood base (by an observation of I. Glicksberg),

and since a first countable symmetrizable Hausdorff space is semimetrizable,

any example of a regular, feebly compact, symmetrizable space that is not

separable would also provide a negative answer to the still open question (see

[DGN]) as to whether or not every point of a regular symmetrizable space

must be a G8.

(ii) In the construction above, if Y is chosen so that no compact subset of Y

has nonempty interior, then arguments similar to ones given in [DGN] show

that X has a closed subset, namely m, which fails to be a GÄ-set (because then

if T is a countable family of open sets containing m, the family % = [V r\

Y: V E T} consists of dense open subsets of Y, and so 0 ¥= D % c Y and
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