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NILPOTENT GROUPS

P. MENAL

Abstract. In this note we consider relations between residual finiteness and

residual linearity for a nilpotent group G. We show, amongst other things,

that if the center and the commutator subgroup of G aie finitely generated

and G is residually linear, then G is residually finite. Indeed the property

which we use on linear groups is that linear groups satisfy the minimal

condition on centralizers.

Let $ be a group property. We recall that a given group G is called

residually ty if it is a subdirect product of groups having the property 9. For

any group G let R (G) be the intersection of all its normal subgroups of finite

index. Thus R(G) = <1> if and only if G is residually finite. For any integer n

let G" be the subgroup of G generated by the nth powers of elements of G.

For abelian groups it is well known that R(G) = nn>iG"; if in addition the

/»-torsion of G is bounded for each primep, then R(G) is a radicable group.

We say that G is residually linear if for each 1 =£ x E G there exists a field K

and a homomorphism </>: G->GL(/z, K) such that d>(jc) ̂ 1. An abelian

group is "31 if it is a subdirect product of cyclic groups C, such that C, = Z or

|C,| < n for a fixed integer n. We will use the symbols Tn(G) and Zn(G) for

the terms in the lower and upper central series of G. If A' is a subset of the

group G we denote by CC(X) its centralizer.

The main result of this paper is

Theorem I. (i) Let G be a nilpotent residually linear group. If T2(G) is

finitely generated and ZX(G) is *3l, then G is residually finite.

(ii) There exists a nilpotent group of class 2 with T2(G) finitely generated and

ZX(G) residually finite, such that it is residually linear but it is not residually

finite.

(iii) There exists a nilpotent group of class 3 with ZX(G) cyclic, which is

residually linear but it is not residually finite.

Corollary. Let G be a nilpotent group of class 2 with ZX(G) finitely

generated. Then residually linear implies residually finite.

Lemma I. Let G be a nilpotent linear group. If H is a normal subgroup of G

such that H n ZX(G) is finitely generated, then H is finitely generated.
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Proof. We proceed by induction on the class c of G, the case c = 1 being

obvious. Suppose that the elements xx, x2,..., xn of G span G linearly,

clearly

zi(G) = CG ixx, x2,. .., xn).

Let [x,y] = x~ly~lxy denote commutators in G, then the map

H n z2(G)^(//n zxiG))x ■ ■ ■ x(h n zxiG))

in which x h-> i[x, xx], . . ., [x, xn]) is a group homomorphism with kernel

H n ZxiG). Thus (// n Z2(G))/(/7 n ZxiG)) is finitely generated. Since G

is a linear group, G/ZxiG) is linear [5, Theorem 6.2] and we have that

(HZxiG)/ZxiG)) n Z,(G/Z,(G)) ^ (// n Z2(G))/(/7 n Z,(G))

is finitely generated. By induction it follows that

HZX iG)/Zx iG) *H/(Hn Z, (G))

is finitely generated and the result is clear.

Lemma 2. Let G be a nilpotent linear group. Then the following are equiva-

lent.

(i) If x E G, the normal closure of <x> in G is finitely generated.

(ii) T2(G) is finitely generated.

(iii) G/ZxiG) is finitely generated.

Proof. For arbitrary nilpotent groups (iii) implies (ii) [3, Corollary 3.19].

Trivially (ii) implies (i). Let xx, x2, . . . , xn be elements of G spanning G

linearly. If we suppose that the normal closure F in G of <[xx, x2, . . . , x„> is

finitely generated, the homomorphism

Z2iG)^> F X • • • X F

in which x H> i[x, xx], . . ., [x, x„]) proves that Zx(G/ZxiG)) is finitely

generated. It follows from Lemma 1 that G/ZX(G) is finitely generated. This

proves that (i) implies (iii).

Lemma 3. Let G be a nilpotent group such that G/ZxiG) is finitely generated.

Then G is residually finite if and only if ZX(G) is residually finite.

Proof. It suffices to show that /?(Z,(G)) = /?(G). Trivially /?(Z,(G)) Ç

/?(G). For if N is a subgroup of ZX(G) of finite index, N<G, so G/N is

finitely generated, nilpotent and hence residually finite [2, Theorem 2.1]. Thus

RiG)EN and J?(G)CÄiZxiG)).
We remark that Lemma 3 is a trivial consequence of [4, Proposition 1].

However, the above is quite sufficient for our purposes.

Proposition 4. Let G be a residually linear nilpotent group satisfying the

following conditions.

ii) If x E G, the normal closure of (x} in G is finitely generated.

(ii) G/T2(G) is residually finite and for each prime p its /?- torsion is bounded.

Then G is residually finite.
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Proof. Let 1 ¥= x E G. We will prove that x G R (G). Since G is residually

linear we can consider a homomorphism ¿> of G into a linear group such that

<b(x) =7*= 1. Let G = G/(Ker <¡> n T2(G)). Since homomorphic images of G

satisfy (i) it follows from Lemma 2 that r2(G/Ker <p) and

(G/Kerd>)/Z,(G/Ker</>) are finitely generated._Clearly G~c-> (G/Ker <p) X

(G/T2(G)). Then we see easily that T2(G) and G/ZX(G) are finitely gener-

ated. Furthermore we have

G/r2(c>c/r2(c).

Thus by (ii) we conclude that the /^-torsion of G is bounded for each prime p.

Therefore R(ZX(G)) is a radicable group. But G/T2(G) is residually finite_so

R(ZX(G)) C T2(G). Since T2(G) is finitely generated, necessarily R(ZX(G))

= <1>. Now Lemma 3 implies that G is residually finite. Since x G Ker <¡> n

T2(G) we conclude that x & R (G).

Lemma 5. Let G be a 51 group and let H be a finitely generated subgroup.

Then G/H is a 51 group.

Proof. G is a 51 group hence G C HZ X C. Where C is a bounded group

and so a direct sum of cyclic groups [1, Theorem 17.2]. Since subgroups of 51

groups are 51 groups, we can assume G = ITZ X C in order to prove the

lemma. Let H be a finitely generated subgroup of G. Then there exist finitely

generated subgroups M Q ITZ and NEC such that H C M X N. Every

finitely generated subgroup of IIZ can be embedded in a finitely generated

direct summand of IIZ [1, Theorem 19.2]. Clearly the same property holds for

C. Therefore we may, in addition, suppose that M X M' = IIZ and N X N'

= C for some M' Ç IIZ and N' C C. Now we have

G/H s (M X N/H) X M' XN'
and the result follows.

We can now give the

Proof of Theorem I. (i) By the proposition, we have only to prove that

G/T2(G) is residually finite and the elements of G/T2(G) of finite order are

of bounded order. We use induction on the class c of G. If c = 1 the result is

trivial. Suppose_c > 1 and let G = G/ZX(G). Trivially T2(G) is finitely

generated. ZX(G) is 51, since it is contained in a product IIZ,(G). By

induction we have that G/T2(G) is residually finite and its torsion is

bounded. Since ZX(G) is 51 and T2(G) is finitely generated it follows from

Lemma 5 that Z,(G)r2(G)/r2(G) is 51. Therefore we have that G/T2(G) is

of torsion bounded. Thus R(G/T2(G)) is a radicable group contained in

Z,(G)r2(G)/r2(G). Since 51 groups contain no nontrivial radicable groups

we conclude that G/T2(G) is residually finite.

(ii) Let/j be a prime. Put

G = O,, *,., V,., i = 0, I, . . . : zf+x = z,.,

[*i,Xf] =[y»yj} -[*i>*j] m[^Xj] =[zi,yJ] = 1,

[xt,yj} = 1 iîi+], [x„y,] = zp0").
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G is a nilpotent group of class 2 with T2(G) = <z0> and

Z1(G)«<zi,*«0, 1,...>*Ç,

(where Qp is the group of all rational numbers whose denominators are

powers of/?). ZxiG) is residually finite however it does not satisfy "31. We will

prove that G is not residually finite but it is residually linear. Suppose that

x H> x is a homomorphism of G into a finite group G. Then, by the finiteness

of G, there exist distinct integers n, m with xn = xm. Thus 1 = [3cm,/m] =

[xn,ym] = zpm. Since a finite homomorphic image of Qp has no elements of

order/?, we have that z0 = Ï so z0 G R (G). In fact R iG) = ZxiG). Let ä: be

a field containing the /? "-roots of the unity for any integer n > 1. In order to

prove that G is residually linear it suffices to show that the group G„ =

G/(zK"y is residually AT-linear for any integer n > I, since nn>i<z£"> = <1>.

It follows from the relations of G that ZX(G„) is Zip00) by a residually finite

group. Therefore Zx(Gn) is residually /f-linear. Clearly Z,(GJ has finite index

in G„ so G„ is residually ÄMinear and the result follows.

(iii) Let p be a prime. Let G be a group generated by z, /„ x¡,y„ i =

1,2,..., subject to the relations

[*->*/] *[yt>yA =U> ír] -[*.*#] "»[M] -[*.«] = i,

[ ',. *,] = [ f„ y¡] = Z"',     [ /,., x,]m[ t., yj] = 1     if i * j.

G is a torsion free nilpotent group of class 3 with center <z>. Let x h> x be a

homomorphism of G into a finite group G. Then, by finiteness of G, there

exist distinct integers n, m with_y„ = ym. Thus

~\={Lyn] =[Lym] = tpm-

Suppose that z =£ I. Then /l,(z), the/?-height of z in G, is finite. Again there

exist distinct integers r, s > /l,(z), with Ï = [xr,ys] = [xs,ys] = if z. Hence

z = (^"'y' a°d s < /ip(z), a contradiction. Therefore we have shown that z

belongs to the kernels of all homomorphism of G into finite groups so

z G RiG). Finally we show that G is residually ÂMinear, if K contains, for

every n, the /? "-roots of the unity. Define for each integer n > 1

H„ = <lf", if", . . . , f£„ z"\ t£z for m > »>.

Clearly H„ is a normal subgroup of G and Hn n <z> = (z'"). Therefore

D0|ii, = <1>. Then it suffices to prove that the group G = G/Hn is

residually ÀMinear. It is clear that

G = <Z,(G),x„ . . . ,xn_x,yx, . . . ,yn_x,tx, .. ., /„_,>.

Furthermore, for ; = 1, 2, . . . , n — 1, we have

ïr'-ï so[xr,t]]=[yr,t,] = i,

[xf\yl]=[xl,ylf[xi,yl,xlf<J'n-,)/2

= />'+z/'z/'2,+"</'',-|)/2= I
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similarly \yf, x¡] = 1. These relations yield that G/ZX(G) is a torsion group

which is finite, since it is finitely generated. The result follows, since ZX(G) is

residually K-linta.T.

I wish to thank Professor D. S. Passman who showed me an example which

gave me the inspiration for this paper. Also I should like to thank the referee

for his comments.
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