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WEAK EXPECTATIONS AND INJECTTVTTY
IN OPERATOR ALGEBRAS

BRUCE E. BLACKADAR

Abstract. An example is given of a noninjective von Neumann algebra M

on a separable Hubert space % for which there exists a weak expectation of

ß(9C) into M. Some positive results about weak expectations are also

obtained.

1. Introduction. Much of the recent work in the structure theory of C*-alge-

bras and von Neumann algebras has been concerned with the closely related

concepts of nuclearity and injectivity (see [3], [4]). It is becoming evident that

the classes of nuclear C*-algebras and injective von Neumann algebras have

a simple enough structure to be tractable (at least in the separable case), while

being broad enough to include most algebras of interest.

Lance [7] introduced the concept of a weak expectation, and showed its

close connection with the problem of extending cross norms on tensor

products of C*-algebras. Subsequently, Choi and Effros [2] made a more

detailed study of weak expectations and injectivity. Lance raised a number of

important questions, one of which (slightly rephrased) is the following:

Question. Let M be a von Neumann algebra on a Hilbert space %. If there

is a weak expectation for M, is M necessarily injective?

Choi and Effros [2], using a result of Wassermann [11], gave a negative

answer if % is not separable. But in view of results such as those of [4], [5],

and §2 of this paper, it is reasonable to expect the situation for a separable %

to be nicer.

Nonetheless, the answer to Lance's question is negative, even if % is

separable; a counterexample is given in §3. §4 is a discussion of open

questions and applications.

Most of the research for this paper was conducted at a Research Institute

for Operator Theory at the University of New Hampshire, Summer 1976,

funded by a grant from the National Science Foundation. I would also like to

thank Edward Effros for valuable discussions on the subject of this paper.

2. Positive results. In this section, we describe some of the structure

associated with weak expectations, particularly when the underlying Hilbert

space is separable.
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Throughout this section, let A be a p*-algebra of operators on a Hilbert

space %, containing the identity, and let M = A" be its weak closure. Recall

that a weak expectation for M with respect to A is a completely positive map

P from £(%) into M such that P(l) = 1 and P(ax) = aP(x) and P(xa) =

P(x)a for all a G A, x G £(0C). If /I = M, P is called a conditional expec-

tation, and M is said to be injective if there is a conditional expectation of

£(%) onto M. Details can be found in [2], [7], and [10].

Unlike conditional expectations, weak expectations need not be idempo-

tent; however, the next theorem shows that idempotent weak expectations

can always be found.

Theorem 2.1. If there is a weak expectation for M with respect to A, there is

an idempotent weak expectation for M with respect to A.

Proof. Let S be the set of all weak expectations for M with respect to A. S

is a compact convex subset of £(£(%)) with the topology of pointwise

a-weak convergence. Let P0 G S ; then the function P H» P ° P0 is a

continuous map of S into S, and so has a fixed point Px by the Schauder

fixed point theorem. Similarly, there is a P2 E S such thatP2 »i, = P2.

Then P2 ° P0 = (P2 ° Px) ° P0 = P2 ° (P, ° P0) = P2° Px = P2. Continuing

inductively, we construct a sequence {Pn} such that Pn ° Pm = P„ if n > m.

Let Pu be any limit point of the sequence {Pn); then Pu ° Pn = Pu for all n.

Thus the construction can be continued transfinitely to give a Pa G S for

each ordinal a, such that Pa ° Pß — Pa ii a > ß. Eventually, the transfinite

sequence must repeat.

For the rest of the section, we will assume that P is an idempotent weak

expectation for M with respect to A. We may assume that A = {a E M:

Piax) = aPix), Pixa) = Pix)a Vx G £(%)}. Let R be the range of P.

Then A E R EM, and by [1, Theorem 3.1], A = {a E R: a*a E R, aa* E

R}. Thus, A contains all projections of R, and if R is a Jordan algebra, then

A = R (so R is an algebra). By [2, Theorem 3.1] and [10, Theorem 5], R

becomes a conditionally complete injective A JP'-algebra under the multipli-

cation x • y = P (xy).

The next proposition shows that if % is separable, then "most" spectral

projections of selfadjoint elements of A are again in A.

Proposition 2.2. Suppose % is separable. Let x E A, x = x*. Then x is in

the C*-subalgebra of A generated by the spectral projections of x which are in

A.

Proof. Let X, ¡u G R, X < ¡u, \ and ¡u not in the point spectrum of x. Then

E[\,rtix) — E(\,n)ix) is a projection of £,(%) which is both an increasing and a

decreasing limit of elements of A +. Since P is order-preserving, £(A j(x) G R.

But every projection in R is in A. Since the point spectrum of x is countable,

its complement is dense in R.

Corollary 2.3. // % is separable, every maximal commutative subalgebra of
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A is generated by projections, and the projections of A are strongly dense in the

projections of M.

Proof. Let e be a projection of M, and let (x„) be a sequence of

selfadjoint elements of the unit ball of A with x„ -» e strongly (Kaplansky

density.) Let \ E [1/3, 2/3] ~ ap(xn), and let en = E[KX](x„). Then e„ is a

projection in A, and en -^ e strongly.

Remark. A similar proof shows that if A is a conditionally complete

C*-algebra which has a faithful representation m on a separable Hilbert space,

then every maximal commutative C*-subalgebra of tt(A) is generated by

projections, and therefore A is an A W*-algebra.

If % is separable and R is an algebra, in many cases we can conclude from

[5] that the identity representation of R is normal, i.e. the supremum in R of

an increasing sequence of projections of R is the same as the supremum in

£(%). In particular, if M is a factor, then R is an AW*-factor, so [5,

Theorems 1 and 2] apply. The following proposition then shows that R = M.

Proposition 2.4. Let B be an A W*-algebra, and let m be a faithful normal

representation of B. Then B is a W*-algebra, andtr(B) is weakly closed.

Proof. B is a IP'-algebra by [8, p. 174]. Let C be a maximal commutative

subalgebra of B; C is a commutative M7*-algebra, and 77(C) is weakly closed

by [9, 1.13.2 and 1.16.2]. Thus 77(A) is weakly closed by [8, p. 174].

We summarize the above results in a theorem.

Theorem 2.5. Let M be a factor on a separable Hilbert space. If there is an

indempotent weak expectation P for M (with respect to some weakly dense

C*-subalgebra) whose range is a Jordan algebra, then P is a conditional

expectation onto M, and so M is injective.

The following argument, due to E. Effros, indicates that the hypothesis that

% be separable is probably necessary. Let A be a hyperfinite II, factor; then

A** is not injective ([11, Corollary 1.9] and [3, Theorem 3]), so there ought to

be a direct summand M of A** which is a noninjective factor (if A were

separable, this would follow from [4, 6.4(b) and 6.5]; the difficulty in the

present case is the lack of a direct integral theory). If M is such a factor, let 77

be a representation of A on a Hilbert space % with tr(A)" = M. it is faithful

since A is simple; since A is injective, there is a conditional expectation of

t(%) onto 11(A), which is a weak expectation for M.

The hypothesis that M be a factor is also necessary: there exists a faithful

representation tt of /°° on a separable Hilbert space % such that ir(l°°) is not

weakly closed (W. Bade, unpublished). Since /°° is injective, there is a

conditional expectation of t(%) onto tt(/°°) which is a weak expectation for

M = 7r(/°°)".

3. Negative results. In this section we give an example of a noninjective von

Neumann algebra M on a separable Hilbert space which has a weak expec-

tation with respect to a weakly dense C*-subalgebra.
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Let A = B = C*(F2), the group C*-algebra of the free group on two

generators. Let p,, p2, . . . (respectively ax, a2, . . . ) be pairwise nonequivalent

irreducible representations of A (resp. B) such that ©p, (resp. ©a,) is

faithful. Let ir¡ = p, ® a, be the corresponding irreducible representation of

A ® B on %¡ (throughout this section, "tensor product" will always mena

"minimal tensor product", using the least C*-cross norm). Let 770 be the

representation of A ® B generated by the left and right regular repre-

sentations of F2. (By [11, Proposition 2.7] the regular representation actually

gives a representation of the minimal tensor product.) Let 7r0 act on Dig, and

let Mt = ir¡(A <S> 1)" for each i > 0. Let % = ©~ 0%, M = ©°10M„

v = ©," tfi- Then it is a faithful representation of A ® B, and ir(A ® 1)" =

vt(1 <8> B)' = M since all of the p,'s and o,'s are nonequivalent. As in the proof

of [7, Theorem 3.3], we may regard A <8> B as a subalgebra of £(%) <8> B, and

so 77 extends to a representation 7? of £(%) ®r?ona larger Hilbert space %.

For x G £(%), let P(x) be the compression of 7r(x ® 1) to %; then P is a

weak expectation of £(%) into M with respect to 77(v4 ® 1). However, it is

well known that M0 is not injective, so M is not injective.

4. Open questions. An important feature of the weak expectation construc-

ted in §3 is that the weak expectation algebra for P does not contain the

center of M. The fact that ir(A ® 1) is skewed with respect to the center of M

seems essential for the construction. In fact, Lance [7, Theorem 4.2] has

shown that there is no weak expectation for M0 with respect to 770L4 ® 1).

It is natural to rephrase the original question in the following form:

Question. Let M be a von Neumann algebra on a separable Hilbert space.

If there is a weak expectation for M with respect to a weakly dense

subalgebra containing the center of M, is M necessarily injective?

Using direct integral theory, it is enough to settle the question for M a

factor.

If the answer to this question is yes, then a modification of the techniques

of [7] can be used to prove the following two consequences, providing a

solution to two of the most important open questions concerning nuclear

C*-algebras:

(1) Every separable C*-algebra can be embedded into a separable nuclear

C*-algebra.

(2) There exists a separable, simple, purely infinite, nuclear C* -algebra with

identity; such a C*-algebra cannot be an inductive limit of type I C*-algebras

by [6].

Added in Proof. The above question and consequence (1) have been

settled negatively by the author [12], and consequence (2) settled affirmatively

by J. Cuntz [13].
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