FREE LIE ALGEBRAS AS MODULES OVER THEIR ENVELOPING ALGEBRAS

JOHN P. LABUTE

ABSTRACT. In this paper we determine the linear relations that exist between the free generators of a free Lie algebra L when it is viewed as a module over its enveloping algebra via the adjoint representation. As an application, the annihilator of a homogeneous element of L is determined.

1. Statement of results. Let K be a commutative associative ring with unit, let L be a free Lie algebra over K (cf. [1]), and let U be the enveloping algebra of L. We identify L with its image under the canonical injection of L into U. We are interested in the structure of L as a left U-module via the adjoint representation ad: $U \rightarrow \operatorname{End}_{K}(L)$.

Let x_1, \ldots, x_n be arbitrary nonzero elements of L. Let e_1, \ldots, e_n be the usual basis of the (left) U-module U^n :

$$e_i = (d_{i1}, \ldots, d_{in})$$

with $d_{ik} = 1$ for k = i and zero otherwise. For $1 \le i, j \le n, u, v \in U$, define $e_i(u), e_{ii}(u, v) \in U^n$ by

$$e_i(u) = (\mathrm{ad}(u)x_i)ue_i,$$

$$e_{ij}(u, v) = (\mathrm{ad}(v)x_j)ue_i + (\mathrm{ad}(u)x_i)ve_j,$$

and let *E* be the *U*-submodule of U^n generated by the elements $e_i(u)$, $e_{ij}(u, v)$ with $1 \le i, j \le n, u, v \in U$. If x_1, \ldots, x_n are homogeneous for some grading of the Lie algebra *L*, then the elements u, v above can be taken to be homogeneous for the natural grading of *U* induced by the grading of *L*. Hence, in this case, *E* is a homogeneous submodule for the grading of U^n defined by saying that $(u_1, \ldots, u_n) \in U^n$ is homogeneous of degree *k* if and only if $u_1, \ldots, u_n \in U$ are homogeneous of degree *k*. If $(u_1, \ldots, u_n) \in E$, then we always have the relation

$$\operatorname{ad}(u_1)x_1 + \cdots + \operatorname{ad}(u_n)x_n = 0.$$

THEOREM 1. If x_1, \ldots, x_n is a free generating system for L, then

$$\operatorname{ad}(u_1)x_1 + \cdots + \operatorname{ad}(u_n)x_n = 0 \quad iff(u_1, \ldots, u_n) \in E.$$

© American Mathematical Society 1978

Received by the editors November 3, 1976 and, in revised form, May 16, 1977.

AMS (MOS) subject classifications (1970). Primary 17B35, 17B65; Secondary 16A06.

Key words and phrases. Free Lie algebra, adjoint representation, annihilator.

The proof of this theorem (for which we are indebted to the referee) is a minor adaptation of an argument in [2].

Now let I be the ideal of L generated by x_1, \ldots, x_n and let W be the enveloping algebra of L/I. Consider the following conditions on x_1, \ldots, x_n :

(1) The elements x_1, \ldots, x_n are homogeneous for some grading of L;

(2) The ideal I is a free Lie algebra;

(3) The quotient L/I is a free K-module;

(4) The quotient I/[I, I] is a free W-module of rank n with basis x_1, \ldots, x_n (mod [I, I]).

These conditions are satisfied if x_1, \ldots, x_n is part of a free generating system for L (cf. [1, §2, Proposition 10]) or if n = 1, K is a field, and x_1 is homogeneous and nonzero (cf. [3]).

THEOREM 2. If conditions (1), (2), (3), (4) hold, then the conclusion of Theorem 1 remains valid.

COROLLARY 1. If x_1, \ldots, x_n is part of a free generating system for L, then $ad(u_1)x_1 + \cdots + ad(u_n)x_n = 0$ iff $(u_1, \ldots, u_n) \in E$.

COROLLARY 2. If x is a nonzero homogeneous element of L, and if K is a field, then ad(u)x = 0 if and only if

$$u = \sum_{v \in U} w_v(\mathrm{ad}(v)x)v \qquad (w_v \in U).$$

In [4] we use Corollary 2 in an essential way to determine the Lie algebra associated to the lower central series of the group $\langle x, y: x^p = 1 \rangle$ (*p* a prime). We do not know whether the homogeneity condition can be dropped in Corollary 2.

As was pointed out to us by the referee, Corollary 2 includes as a special case the known result (cf. [5, Theorem 5.10]) that two homogeneous elements of a free Lie algebra over a field K commute if and only if they are linearly dependent. However, the result in [5] is more general since there it is not assumed that K is a field.

2. Proof of Theorem 1. Complete x_1, \ldots, x_n to a Hall basis H of L (cf. [1]). The elements of H are homogeneous (for the natural grading of L), form an ordered set, and are defined inductively as follows:

(i) The elements $u \in H$ of degree d(u) = 1 are x_1, \ldots, x_n .

(ii) The elements $u \in H$ of a given degree ≥ 1 are ordered in an arbitrary manner. If $u, v \in H$, then u < v if d(u) < d(v).

(iii) If $u, v \in H$ with u < v, then $[u, v] \in H$ if d(v) = 1 or if $v = [v_1, v_2]$ with $v_1, v_2 \in H$ and $v_2 > v_1 \le u$.

Every element of H can be uniquely written in the form $ad(u_k \ldots u_1)x_j$ where (a) $k \ge 0$; (b) $u_i \in H$ for $1 \le i \le k$; (c) $u_1 \le u_2 \le \cdots \le u_k$; (d) $ad(u_{k-i} \ldots u_1)x_j > u_{k-i+1}$ for $1 \le i \le k$. Conversely, such elements are elements of H. We call an element $u_k \ldots u_1$ normed of type j if (a), (b), (c), (d) are satisfied.

136

Let N be the K-submodule of U^n spanned by the elements of the form we_i , where w is normed of type i. The mapping $f: U^n \to L$ defined by

$$f(u_1,\ldots,u_n) = \mathrm{ad}(u_1)x_1 + \cdots + \mathrm{ad}(u_n)x_n$$

is a U-module homomorphism of U^n onto L whose restriction to N is bijective. To prove the theorem it suffices to show that $U^n = N + E$ since $E \subseteq \text{Ker}(f)$. But this would follow if we could show that $vN \subseteq N + E$ for any $v \in H$. Let $v = \operatorname{ad}(v_1 \ldots v_l)x_i$, where $v_1 \ldots v_l$ is normed of type *i*, let $u_1 \ldots u_k$ be normed of type *j*, and let $u = \operatorname{ad}(u_1 \ldots u_k)x_j$. We want to show that $vu_1 \ldots u_k e_i \in N + E$. Let m = d(u) + d(v).

If m = 2, we have k = 0 and $v = x_i$. If $x_i = x_j$, we have $ve_j \in E$. If $x_i < x_j$, then v is normed of type j and $ve_i \in N$. If $x_i < x_i$, then

$$ve_i = x_i e_i \equiv -x_i e_i \pmod{E}$$

and, since x_j is normed of type *i*, we have $ve_j \in N + E$. Hence the result holds if m = 2.

We proceed by induction on *m*, assuming that m > 2 and that the result holds for all pairs (u', v') with d(u') + d(v') < m. We have

$$vu_1 \dots u_k e_j = (\mathrm{ad}(v_1 \dots v_l)x_i)u_1 \dots u_k e_j$$

$$\equiv -(\mathrm{ad}(u_1 \dots u_k)x_j)v_1 \dots v_l e_i \pmod{E}$$

$$= -uv_1 \dots v_l e_i.$$

Also $uu_1 \ldots u_k e_j = (ad(u_1 \ldots u_k)x_j)u_1 \ldots u_k e_j \in E$. Hence, without loss of generality, we may assume that v < u. Hence $\min(d(u), d(v)) = d(v)$. As m > 2 we have d(u) > 1, and so k > 0.

(a) If $v \ge u_1$, then (as v < u) $vu_1 \dots u_k$ is normed of type j and so $vu_1 \dots u_k e_i \in N$.

(b) If $\min(d(u), d(v)) > m/3$, then d(u) = m - d(v) < 2m/3. As $u_1 \ldots u_k$ is normed of type *j* we have $u_1 < \operatorname{ad}(u_2 \ldots u_k)x_j$ and so $d(u_1) \le d(u)/2 < m/3$. Thus $d(u_1) < d(v)$ and hence $u_1 < v$. Then by (a) the result holds.

(c) Proceeding by downward induction on $\min(u, v)$, we assume that the result holds for all pairs (w, z) with $z \in H$, $w = \operatorname{ad}(w_1 \ldots w_r)x_s$, $w_1 \ldots w_r$ normed of type s, d(w) + d(z) = m, and $\min(w, z) > \min(u, v)$. In view of (a), we may assume $u_1 > v$. Now

$$vu_1 \dots u_k e_j = (\operatorname{ad}(v_1 \dots v_l)x_i)u_1 \dots u_k e_j$$

$$\equiv -(\operatorname{ad}(u_1 \dots u_k)x_j)v_1 \dots v_l e_i \pmod{E}$$

$$= -u_1 \{ (\operatorname{ad}(u_2 \dots u_k)x_j)v_1 \dots v_l e_i \}$$

$$+ (\operatorname{ad}(u_2 \dots u_k)x_j) \{ u_1 v_1 \dots v_l e_i \}.$$

The expressions in braces both have degree $\langle m$. Thus by the induction assumption they are congruent modulo E to elements of N of the same degree. Now $u_1 > v$, $ad(u_2 \dots u_k)x_j > u_1 > v$, $d((ad(u_2 \dots u_k)x_j)v_1 \dots v_l) \ge d(v)$, and $d(u_1v_1 \dots v_l) \ge d(v)$. Consequently $vu_1 \dots u_k e_j$ is a linear combination of terms of the form $zw_1 \ldots w_r e_s$ with $z \in H, w_1 \ldots w_r$ normed of type s, z > v, and $w = ad(w_1 \ldots w_r)x_s > v$. By induction, the result follows.

3. Proof of Theorem 2. Since I is a homogeneous ideal of L with L/I a free K-module, we have L = I + J with J a free homogeneous K-submodule of L. Let (t_i) be an ordered, homogeneous, K-module basis of J, and let B be the set of elements of U of the form

$$t_{i_1}t_{i_2}\ldots t_{i_k} \qquad (i_1 \leq i_2 \leq \cdots \leq i_k, \, k \geq 0)$$

Then, because of homogeneity, I is a free Lie algebra over K with free generating system $(ad(w)x_j)_{w \in B, 1 \leq j \leq n}$. Moreover, every element $u \in U$ can be uniquely written in the form

$$u = \sum_{w \in B} v_w w$$

where $v_w \in V$, the enveloping algebra of *I*. Now suppose that

$$\operatorname{ad}(u_1)x_1 + \cdots + \operatorname{ad}(u_n)x_n = 0$$

and write

$$u_i = \sum_{j=1}^m v_{ij} w_j \qquad (1 \le i \le n)$$

with $v_{ij} \in V$ and w_1, \ldots, w_m distinct elements of B. Then, if $z_{ij} = ad(w_j)x_i$, we have

$$\sum_{i,j} \operatorname{ad}(v_{ij}) z_{ij} = 0.$$

Moreover, by introducing zero elements v_{ij} and increasing *m*, we can assume that the elements v_{ij} are in the subalgebra V' of *V* generated by the elements z_{ij} . Applying Theorem 1, we obtain that the family (v_{ij}) is a *V'*-linear combination of elements of the form

$$(\mathrm{ad}(v)z_{ij})ve_{ij}, (\mathrm{ad}(v)z_{ij})we_{kl} + (\mathrm{ad}(w)z_{kl})ve_{ij},$$

where $v, w \in V'$ and e_{pq} is the family (d_{ij}) with $d_{ij} = 1$ if p = i, q = j and zero otherwise. Since

$$(u_1,\ldots,u_n)=\sum_{j=1}^m(v_{1j},\ldots,v_{nj})w_j,$$

it follows that (u_1, \ldots, u_n) is a V'-linear combination of elements of the form

(1)
$$(\operatorname{ad}(v)z_{ij})vw_je_i = (\operatorname{ad}(vw_j)x_i)vw_je_i,$$

(2)
$$(\operatorname{ad}(v)z_{i\,j})ww_{l}e_{k} + (\operatorname{ad}(w)z_{kl})vw_{j}e_{i}$$
$$= (\operatorname{ad}(vw_{j})x_{i})ww_{l}e_{k} + (\operatorname{ad}(ww_{l})x_{k})vw_{j}e_{i},$$

which lie in E. Q.E.D.

FREE LIE ALGEBRAS

References

1. N. Bourbaki, Groupes et algèbres de Lie, Éléments de Mathématiques, Hermann, Paris, 1972, Chapitre 2.

2. Marshall Hall, Jr., A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1 (1950), 575–581.

3. John P. Labute, Algèbres de Lie et pro-p-groupes définis par une seule relation, Invent. Math. 4 (167), 142–158. MR 36 # 1581.

4. _____, The lower central series of the group $\langle x, y: x^p = 1 \rangle$ (to appear).

5. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.

DEPARTMENT OF MATHEMATICS, MCGILL UNIVERSITY, MONTREAL, QUEBEC, CANADA