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FREE LIE ALGEBRAS AS MODULES

OVER THEIR ENVELOPING ALGEBRAS

JOHN P. LABUTE

Abstract. In this paper we determine the linear relations that exist between

the free generators of a free Lie algebra L when it is viewed as a module

over its enveloping algebra via the adjoint representation. As an application,

the annihilator of a homogeneous element of L is determined.

1. Statement of results. Let A" be a commutative associative ring with unit,

let L be a free Lie algebra over K (cf. [1]), and let U be the enveloping algebra

of L. We identify L with its image under the canonical injection of L into U.

We are interested in the structure of L as a left ¿/-module via the adjoint

representation ad: U —> End^L).

Let xx, . . . , xn be arbitrary nonzero elements of L. Let ex, . . . ,e„ be the

usual basis of the (left) (/-module U":

<?, = (diX,. ..,din)

with dik = 1 for Ä: = 7 and zero otherwise. For 1 < 7, j < n, u, v E U, define

e¡(u), ey(u, v) E U" by

e¡(u) = (&d(u)x)ue¡,

e0(u, v) = (&d(v)Xj)ue¡ + (&d(u)x,)vej,

and let E be the tZ-submodule of U" generated by the elements e¡(u), e¡j(u, v)

with 1 < i,j < 77, u, v E U. If xx, . . . , x„ are homogeneous for some grading

of the Lie algebra L, then the elements u, v above can be taken to be

homogeneous for the natural grading of U induced by the grading of L.

Hence, in this case, E is a homogeneous submodule for the grading of U"

defined by saying that («,, . . . , u„) E U" is homogeneous of degree k if and

only if ux, . . . , u„ E U are homogeneous of degree k. If (ux, . . ., un) E E,

then we always have the relation

ad(«,)jf, + • • • + ad(M>„ = 0.

Theorem l.Ifxx,...,xnis a free generating system for L, then

ad(".)*i + • • • + adKK = 0   iff(ux, ...,un)EE.
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The proof of this theorem (for which we are indebted to the referee) is a

minor adaptation of an argument in [2].

Now let / be the ideal of L generated by x,, . . . , x„ and let W be the

enveloping algebra of L/1. Consider the following conditions on x,,..., x„:

(1) The elements xx, . . . , x„ are homogeneous for some grading of L;

(2) The ideal I is a free Lie algebra;

(3) The quotient L/1 is a free K-module;

(4) The quotient I /[I, I] is a free W-module of rank n with basis x,, . . . , x„

(mod [/, /]).

These conditions are satisfied if x,, . . . , x„ is part of a free generating

system for L (cf. [1, §2, Proposition 10]) or if n = 1, K is a field, and x, is

homogeneous and nonzero (cf. [3]).

Theorem 2. // conditions (1), (2), (3), (4) hold, then the conclusion of

Theorem 1 remains valid.

Corollary 1. If xx, . . . , x„ is part of a free generating system for L, then

ad(u,)x, + • • • + ad(«n)x„ = 0   iff(ux, ...,u„)GE.

Corollary 2. // x is a nonzero homogeneous element of L, and if K is a

field, then ad(u)x = 0 if and only if

" =  2 wi;(ad(ü)x)ü       (wv G U).
v&U

In [4] we use Corollary 2 in an essential way to determine the Lie algebra

associated to the lower central series of the group <x, y: xp = 1> (/» a prime).

We do not know whether the homogeneity condition can be dropped in

Corollary 2.

As was pointed out to us by the referee, Corollary 2 includes as a special

case the known result (cf. [5, Theorem 5.10]) that two homogeneous elements

of a free Lie algebra over a field K commute if and only if they are linearly

dependent. However, the result in.[5] is more general since there it is not

assumed that A" is a field.

2. Proof of Theorem 1. Complete x„ . . . , x„ to a Hall basis H of L (cf. [1]).

The elements of H are homogeneous (for the natural grading of L), form an

ordered set, and are defined inductively as follows:

(i) The elements u G H of degree d(u) = 1 are x,, . . . , x„.

(ii) The elements u G H of a given degree > 1 are ordered in an arbitrary

manner. If u, v G H, then u < v if d(u) < d(v).

(iii) If u, v G H with u < v, then [u, v] G H if d(v) = 1 or if v = [t»„ v2]

with vx, v2 G H and v2 > vx < u.

Every element of H can be uniquely written in the form ad(uk . . . ux)Xj

where (a) k > 0; (b) w, G H for 1 < / < k; (c) w, < u2 < • • • < uk; (d)

ad(uk_¡ . . . ux)Xj > uk_l + x for 1 < í < k. Conversely, such elements are

elements of H. We call an element uk . . . ux normed of type j if (a), (b), (c), (d)

are satisfied.
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Let N be the A'-submodule of U" spanned by the elements of the form we¡,

where w is normed of type i. The mapping/: U" —> L defined by

/(«„ ...,u„) = ad(w,)x, + ■ ■ • + ad(w„)*„

is a (/-module homomorphism of U" onto L whose restriction to N is

bijective. To prove the theorem it suffices to show that U" = N + E since

E E Ker(/). But this would follow if we could show that vN E N + E for

any v E H. Let v = ad(t>, . . . v¡)x¡, where vx . . . v, is normed of type i, let

tí, ... uk be normed of typey, and let u = ad(w, . . . uk)xj. We want to show

that vux . . . ukej E N + E. Let m = d(u) + d(v).

If m = 2, we have k = 0 and v = x¡. If x¡ = x¡, we have iXj E E. If x¡ < xJy

then v is normed of type / and vej E N. If x, < x¡, then

ve} = x,ej = —x,e¡   (mod E)

and, since Xj is normed of type i, we have ue, GiV+£. Hence the result

holds if m = 2.

We proceed by induction on m, assuming that m > 2 and that the result

holds for all pairs (u', v') with d(u') + d(v') < m. We have

vux . . . ukej = (ad(tJ, . . . v,)x)ux . . . ukej

= -(ad(w, . . . uk)xj)vx . . . v¡e¡   (mod E)

= — uvx . . . v¡e¡.

Also uux . . . ukej = (ad(M, . . . uk)xj)ux . . . ukej E E. Hence, without loss of

generality, we may assume that v < u. Hence m±n(d(u), d(v)) = d(v). As

m > 2 we have d(u) > 1, and so k > 0.

(a) If v > ux, then (as v < u) vux . . . uk is normed of type j and so

vux . . . ukej E N.

(b) If min(ii(w), d(v)) > m/3, then d(u) = m - d(v) < 2m/3. As

ux . . . uk is normed of type j we have ux < a.d(u2 . . . uk)Xj and so d(ux) <

d(u)/2 < m/3. Thus d(ux) < d(v) and hence w, < v. Then by (a) the result

holds.

(c) Proceeding by downward induction on min(w, v), we assume that the

result holds for all pairs (h>, z) with z E H, w = ad(w, . . . wr)xs, w, . . . wr

normed of type s, d(w) + d(z) = m, and min(w, z) > min(«, v). In view of

(a), we may assume ux > v. Now

vux... ukej = (ad(u, . . . v,)x)ux . . . uke}

= -(ad(«, . . . uk)xj)vx . . . v,e,    (mod E)

- "«i {(ad(w2 • • • uk)Xj)vx . . . v,e,}

+ (&d(u2 . . . uk)Xj){uxvx ...v,e¡).

The expressions in braces both have degree < m. Thus by the induction

assumption they are congruent modulo E to elements of N of the same

degree. Now ux > v, ad(u2 . . . uk)Xj > w, > v, d((ad(u2 . . . uk)xj)vx . . . v¡)

> d(v), and d(uxvx . . . v,) > d(v). Consequently um, . . . uke- is a linear
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combination of terms of the form zwx . . . wres with z G H, wx . . . wr normed

of type s, z > v, and w = ad(wx . . . wr)xs > v. By induction, the result

follows.

3. Proof of Theorem 2. Since / is a homogeneous ideal of L with L/I a free

A'-module, we have L = I + J with J a free homogeneous À'-submodule of L.

Let (/,-) be an ordered, homogeneous, AT-module basis of J, and let B be the

set of elements of U of the form

hth...tik     (i, < h < • • • < 4.*> o).

Then, because of homogeneity, / is a free Lie algebra over K with free

generating system (&d(w)Xj)weB X<J<„. Moreover, every element u G U can

be uniquely written in the form

»ei

where vw G V, the enveloping algebra of /. Now suppose that

ad(ux)xx + • • • + ad(u„)x„ = 0

and write

m

u¡ = 2 vijwj       (I < i < n)
y-i

with Vjj G V and wx, . . . ,wm distinct elements of B. Then, if z,-, = ad(vv,)x„

we have

Sad(u,,)z,7 = 0.
ij

Moreover, by introducing zero elements v¡¡ and increasing m, we can assume

that the elements u, are in the subalgebra V of V generated by the elements

z¡j. Applying Theorem 1, we obtain that the family (t^-) is a K'-linear

combination of elements of the form

(ad(v)ziJ)veij,   (ad(v) ziJ)wek¡ + (ad(w)zkl)veij,

where v, w G V and epq is the family (dh) with úL = 1 if p = i, q = j and

zero otherwise. Since

m

(«„ ...,«„)= 2 (vy, ■-., Vnj)Wj,
)-\

it follows that (ux, . . . , u„) is a F'-linear combination of elements of the form

(1) (&d(v)zij)vwjei = (ad(vwJ)xi)vwJei,

(2) (ad(v)zij)wwiek + (a.d(w)zkl)owje,

= (ad(vwj)x)ww,ek + (ad(wwl)xk)vwjei,

which lie in E.    Q.E.D.
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