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ON THE SEMI-CANONICAL PROPERTY

IN THE PRODUCT SPACE X X I

A. OKUYAMA AND Y. YASUI

Abstract. As one of the several properties in generalized metric spaces, the

semi-canonical property has been discussed from the viewpoint of the

extension of mappings. In this paper, that property will be discussed in

product space X X I and reduced to a property of X.

1. Introduction. By a pair iX, A) we mean a topological space X with a

closed subset A of X. Let iX, A ) be a pair. As in [6], a collection T = ( Vx :

À G A} of open subsets of X is called a semi-canonical cover for iX, A) if

il)öXeAVx = X-A,and

(2) for each x E A and each neighborhood U of x in X there exists a

neighborhood W of x in X such that St( W, T) c U, where

St( W, T) = U { V E T: V n W7 * 0}

denotes the star of W with respect to T.

If a semi-canonical cover exists for (A', A), iX, A) is called a iem/'-

canonical pair.

It was proved by D. Hyman ([6], [7]) that iX, A) is a semi-canonical pair if

X is the image of a metric space by a closed continuous map. It is also

mentioned by M. Cauty [3] that, if A^ is a stratifiable space (cf. [2]), then any

pair iX, A) is semi-canonical. However, quite recently S. San-ou [11] pointed

out that Cauty's statement was false by constructing an A/,-space X (cf. [4])

such that iX, A ) was not semi-canonical for some closed subset A of X.

The purpose of this paper is to discuss the semi-canonical property in the

product space X x I of a Tx space X with the unit closed interval / and to

reduce it to a property in X.

Theorem 1. Let X be a Tx space. Then iX X I, X X (0)) is a semi-canoni-

cal pair if and only if X is metrizable.

By Theorem 1 it can be easily seen that, if X is any nonmetrizable

A/,-space, then X x I is an M,-space such that iX x I, X x {0}) is never

semi-canonical.
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Theorem 2. Let X be a Tx space. Then (X X I, K X {0}) is a semi-canoni-

cal pair for each compact subset K if and only if X is a regular space which is a

compact-covering,1 open image of a metric space.

Theorem 3. Let X be a Tx space. Then (X X I, {(x, 0)}) is a semi-canonical

pair for each point x E X if and only if X is a regular, first countable space.

Throughout this paper, the following notations will be used: Aq and Xn

denote the subspaces A X {0} and X X {1/«} of X X I for « = 1, 2, ... ; it

denotes the projection from X x I onto X; and In denotes the subspace

[0, 1/«] of 7 for« = 1,2,_

All spaces in this paper are Tx, and all maps are continuous.

2. Proof of Theorem 1. The sufficiency of the condition is clear, since every

pair (A", A) in a metric space X is semi-canonical (cf. [6]). To prove necessity,

suppose that there exists a semi-canonical cover T for (A" X 7, X0). Put

%„ = <vlA„)  («{<r(FnX):reiV})

for « = 1, 2, ... . Then {%„: « = 1, 2,. . . } is clearly a sequence of open

covers of X.

Let us show that, for each point x E X, the system (St2(x, %„): « = 1,

2, . . . } forms a neighborhood base at x, where St2(;c, %) denotes the set

St(St(x, %), %). Then X is metrizable by a theorem of K. Monta [10]. To

complete the proof, let x be any point of X and G an arbitrary neighborhood

of x in X. Since T is a semi-canonical cover for (A" X 7, A"0), there exist a

neighborhood 77, of x in X and a positive integer m such that St(77, X Im,

T) c G x I holds. Again, for the neighborhood 77, of x there exist a

neighborhood 772 of x in X and a positive integer « such that n > m and

St(772 X In, T) c 77, X 7. Now, let us show St2(x, %) c G. Pick an

arbitrary pointy in St2(x, %„).Then there are two members U, U' of Glin with

x E U, y EU' and U n U' ¥= 0. Let z be a point of U n t/'. By the

definition of %„ there exist V, V in T such that

l/=ir(Kn*„)   and    U'= tt(V n Xn).

Hence, (x, 1/«) E V, (z, l/n) E V n K' and (y, 1/«) E V hold. The first

inclusion (x, l/n) E V implies V c 77, X 7, because (jc, 1/«) belongs to

772 x 7„; the second one implies K' c G x I, because (z, l/n) E V shows

(z, 1/«) E HXX I„ and (z, l/n) E V yields K' n (77, X In) J= 0; and, as a

consequence, the last inclusion (y, 1/«) E V implies y E G, which com-

pletes the proof.

3. Some lemmas.

Lemma 1. Let X be a space. If the pair (X X I, {(x, 0)}) is semi-canonical

for every point x E X, then X is a regular space.

1 A continuous map /: X -* Y is called compact-covering if every compact subset of Y is the

image of some compact subset of X.



THE SEMI-CANONICAL PROPERTY 231

Proof. Using the same notations as in the proof of Theorem 1, it has been

shown that, for a given point x of X and an arbitrary neighborhood G of x,

there exists an open cover %„ of X such that St2(A', l„)cG holds. Clearly,

St(x, %„) is a neighborhood of x, whose closure is contained in St2(x, %„)

and hence in G. This proves that A' is a regular space.

If A e X, then an X-base for A isa collection % of open subsets of X such

that, if x G A and V is a neighborhood of x in X, then x G U c V for some

/7G %.

Lemma 2. Le/ X be a regular (F,) space tww/ K a compact subset of X. If

there exists a countable X-base for K, then there exists an X-base U "-i^, for

K such that

(1) tyn is a finite collection whose union covers Kfor n = 1,2,...,

(2) {P: P E <3>n+1} refines % for n - 1,2,..., and

(3) for each point x of K and each neighborhood G of x in X, there exist a

positive integer n and a neighborhood H of x in X such that St (/7, *?„) C G.

Proof. Let <§> be the given countable A'-base for K. Since %\K is a

countable base for K itself, K is metrizable. Hence, for any subset E of K, the

diameter 5(F) of E is well defined and also, for any cover S of K, the

mesh & = sup(5(F); E E S } is well defined.

For each n, let %n be a finite subcollection of <$ such that

(1)„ %.„ covers K, and

(2)nmesh%|A'< 1/2".

Let {%: n = 1, 2,. . . } be the set of all finite subcollections of %, each of

which forms a minimal cover with respect to K; that is, any proper subcol-

lection of \ does not cover K for n = 1, 2, . . . . Put % = %, A %

(={i/n K: l/e%1>KecV,})and<¥„+I = <¥„ A %,+, A %+, for« =

1, 2,... . Then each öuT„ is a finite collection of open subsets of X whose

union covers Ä\

Next, by induction on n, let us construct a finite collection lSn of closed

subsets of K, a finite collection 6ïn of open subsets of X and a function <jpn

from "#„ onto <3'n such that the following conditions are satisfied:

(3)„ % is a closed cover of AT which refines f„A^-i. where ^P0 = {A'},

(4)„ 9>„ refines % A ^,,
(5)„ if F G f„, then F c «p^F), _

(6)„ if F G î,andFc06 U?-,1^ U U?-,(% U %), then <¡p„(F)c 0,
and

(7)„ if F n F' = 0, then tp„(F) n <p„(F') - 0 for F, F 6 f„.

Let sliSx = { Wx, . . ., Wk). Since %x covers Ä" and K is normal, there exists

a closed cover 5, = {F,, . . . , Fk) of A- such that F, c IF, for / = 1, . . . , /V.

Hence 5, satisfies condition (3),. Since X is regular and S7, is a finite

collection, each member of which is compact, and since %x and % are also

finite collections, it is easy to see that the function tp, and ^P, = <Pi(^i) are

well defined to satisfy conditions (4),—(7),, as well. The situation in each step
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is the same as above, and thus '5n, tp„ and 9n are all constructed quite

similarly.

Now, it remains to show that the sequence {^P„: n = 1, 2,.. . } is the

required one in Lemma 2. Since 9n is finite and satisfies (3)„ and (5)„, 9„

satisfies the condition (1). By (3)„ and (6)„, *$„ satisfies the condition (2). To

prove that (*?„:«= 1, 2, ... } satisfies the condition (3), let x be any point

of K and G an arbitrary neighborhood of x in X. Since % is an A"-base for K,

there exists a B0 E % such that x E B0 c G.2 Let T be a finite subcollection

of "35 which is a minimal cover with respect to K and which keeps B0 as the

only member of T containing x. Since K is a compact T2 space and since %

is an A'-base for K, such T certainly exists; further, for some «,"¥=%.

Let T7,, 6f, bea member with x E F0. Then F0 E B0 holds, because %

refines %„ which refines T„ and 7?0 is the only member of T containing x;

and also, by (5)„ and (6)„, the inclusions Fn c <p„(E0) c ^o no^- Since <p„(F0)

is an open set containing x, there exists a postive integer m such that m > «

and a"(x, A - <p„(F0)) > l/2m, where d denotes the metric function on K.

Since l5m+, is a cover of K by (3)m+1, there exists an Fx E fm+, containing

x. To complete the proof, it suffices to show that

St(<pm+1(p-,),íPm+,)c<pn(^o).

because <pm+x(Ex) is an open set in X containing x and <pn(F0) is contained in

BQ, which is contained in G. Let P be an arbitrary member of <$m+x and F

the corresponding member of <3m+x by P = <pm+x(F). If P n <pm+i(Fx) ¥= 0,

then by (7)m+„ F n F, ^ 0. Since fw+1 refines <3>m+1 by (5)m+, and <3>m+1

refines fiufm+I by (4)m+1, and since 1fm+, refines %m+, whose mesh restrict-

ing to K is less than l/2m+1, the diameter <S(F u Fx) is less than l/2m. Since

x belongs to Fx, by the choice of m, F (j Fx c <p„(F0) holds. Again by (6)OT+ „

<Pm+,(F) c <p„(F0) and thus P c <p„(F0) holds, which completes the proof.

Lemma 3. Let X be a regular (Tx) space and K a compact subset of X. If

there exists a countable X-base for K, then (X, K) is a semi-canonical pair.

Proof. Let U"=1<?„ be an A"-base for K obtained by Lemma 2. For each

n± put Gn = U {P: P E <?„}. Then, by conditions (1) and (2) in Lemma 2,

Gn+, c G„ for « = 1, 2, . . . andicn*iC„, and by condition (3) and by

the fact that K is compactait is easily seen that K =_n"_i G„.

Now, put % = {A - G2) and % = <spJ(Gn - Gn+2) for « = 1, 2, ... ,

and put T = UT=o%- T^1611 'l wm be shown that T is a semi-canonical

cover for (A\ K). Clearly, T is an open cover of X — K. To complete the

proof, let x be any point of K and U an arbitrary neighborhood of x in X. By

condition (3) in Lemma 2, there exist a positive integer « and a neighborhood

77 of x in X such that St(77, <3>„) c Í/. Put W = 77 n Gn+1. Then W is a

neighborhood of x in A" such that  W n V = 0 for each  F E 1^1%

2 If if is singleton, then U^-i^ is easily chosen from the given countable A'-base for K,

because X is regular. So, assuming that K is not a singleton, B0 is picked out from $ such that

K - B0 * 0.
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Therefore

St(H/ T) = Stiw, U   %\ E Stiw,   IJ   <?,) E StiH, %) E U
\        i>n        I V i>n        i

by condition (2) in Lemma 2, and that completes the proof.

4. Proofs of Theorems 2 and 3. The following characterization of the

compact-covering open images of metric spaces, due to E. Michael and K.

Nagami [9] will be used in the proof of Theorem 2.

Theorem M-N (E. Michael and K. Nagami).3 For a T2 space X, the

following conditions are equivalent:

(1) X is the compact-covering open image of a metric space.

(2) Every compact subset of X is metrizable and of countable character in X.*

(3) Every compact subset ofX has a countable X-base.

Proof of Theorem 2. Necessity. Let (AT X /, K X {0}) be a semi-canoni-

cal pair for any compact subset K of X. Then A' is a regular space by Lemma

1 putting K in the assumption a singleton. Next, it will be shown that each

compact subset K of X has a countable A'-base. Then X is the compact-

covering open image of a metric space by Theorem M-N.

To complete the proof, let K be a compact subset of X. By the assumption,

there exists a semi-canonical cover T for iX X I, K X (0}). Put % the finite

subcollection of T which covers K X {l/n}, and put %„ = tt(\\X„) for

n = 1, 2,-

Then it is easy to show that the collection IJ „"= x %, is the required Af-base

for K, by the same technique as in the proof of Theorem 1.

Sufficiency. It is easy to check that, if X is the compact-covering open

image of a metric space, then so is A1 X L Hence, for any compact subset K

of X, K X (0} has a countable X x /-base by Theorem M-N, and thus

iX X I, K X (0}) is a semi-canonical pair by Lemma 3, which completes the

proof.

Proof of Theorem 3. Necessity. By Lemma 1, A" is a regular space. The

first countability of X is proved by the same technique as in the proof of the

necessity in Theorem 2, replacing AT by a singleton.

Sufficiency. If A' is a regular (F,) first countable space, then so is X x I. In

general, it is easily seen that, in any regular (F,) first countable space Y, the

pair (F, {y}) is always semi-canonical for each point y E Y. This completes

the proof.

5. Comments. 1. From the proofs of Theorems 1, 2 and 3, it is easy to see

that, in the conditions of these theorems, the closed interval / may be

3 The fact (2) -» (3) was proved by M. M. Coban [5]; for completely regular space X, it had

previously been obtained by A. V. Arhangel'skil [1].

4 A set K C X is of countable character in A- if there is a countable outer base {U„: n ■ 1,

2, . . . } at K in X (i.e. each U„ is open and contains K, and every open set containing K contains

some U„) (cf. [9]).
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replaced by any space containing a convergent sequence. By such replace-

ment in Theorem 1, one obtains a slight modification of the proof of the

following theorem due to D. M. Hyman [7], remembering two facts: (1) The

closed image of a metric space is a Fréchet-Urysohn space (cf. [8]); and (2)

any pair (A", A) is semi-canonical if X is the closed image of a metric space

(cf. [7]).

Theorem (D. Hyman). // X and Y are nondiscrete spaces and if X X Y is

the closed image of a metric space, then X and Y are metrizable.

2. The semi-canonical property need not be two-productive. For example,

let X = N u {p) be a subspace of Stone-Cech compactification ßN of N

(= (1, 2, .. . }) with p E ßN - N. Then it is well known that X is not first

countable atp, and thus (Ar X /, {(/?, 0)}) is not semi-canonical by Theorem

3. However, it is easy to see that any pair (Ar, A) is always semi-canonical.

This example also shows that, in the conditions of Theorems 1 and 2,

X x I cannot be replaced by X. Clearly, then, the semi-canonical property in

X is very different from the semi-canonical property in X X I.
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