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ON THE SEMI-CANONICAL PROPERTY
IN THE PRODUCT SPACE X X [

A. OKUYAMA AND Y. YASUI

ABSTRACT. As one of the several properties in generalized metric spaces, the
semi-canonical property has been discussed from the viewpoint of the
extension of mappings. In this paper, that property will be discussed in
product space X X I and reduced to a property of X.

1. Introduction. By a pair (X, A) we mean a topological space X with a
closed subset A4 of X. Let (X, 4) be a pair. As in [6], a collection V = (¥,:
A € A} of open subsets of X is called a semi-canonical cover for (X, A) if

(1) UpenVy =X — 4, and

(2) for each x € A and each neighborhood U of x in X there exists a
neighborhood W of x in X such that St(W, V) c U, where

SUW, V)= U{V €V:V n W= o)

denotes the star of W with respect to V.

If a semi-canonical cover exists for (X, 4), (X, A) is called a semi-
canonical pair.

It was proved by D. Hyman ([6], [7]) that (X, 4) is a semi-canonical pair if
X is the image of a metric space by a closed continuous map. It is also
mentioned by M. Cauty [3] that, if X is a stratifiable space (cf. [2]), then any
pair (X, A) is semi-canonical. However, quite recently S. San-ou [11] pointed
out that Cauty’s statement was false by constructing an M,-space X (cf. [4])
such that (X, A) was not semi-canonical for some closed subset 4 of X. ,

The purpose of this paper is to discuss the semi-canonical property in the
product space X X I of a T, space X with the unit closed interval I and to
reduce it to a property in X.

THEOREM 1. Let X be a T, space. Then (X X I, X X {0}) is a semi-canoni-
cal pair if and only if X is metrizable.

By Theorem 1 it can be easily seen that, if X is any nonmetrizable
M -space, then X X I is an M -space such that (X X I, X X {0}) is never
semi-canonical.
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THEOREM 2. Let X be a T, space. Then (X X I, K X {0}) is a semi-canoni-
cal pair for each compact subset K if and only if X is a regular space which is a
compact-covering,' open image of a metric space.

THEOREM 3. Let X be a T, space. Then (X X I, {(x, 0)}) is a semi-canonical
pair for each point x € X if and only if X is a regular, first countable space.

Throughout this paper, the following notations will be used: X, and X,
denote the subspaces X X {0} and X X {1/n}of X X I'forn=1,2,...;7
denotes the projection from X X I onto X; and I, denotes the subspace
[0,1/n]of Iforn=1,2,....

All spaces in this paper are T, and all maps are continuous.

2. Proof of Theorem 1. The sufficiency of the condition is clear, since every
pair (X, A) in a metric space X is semi-canonical (cf. [6]). To prove necessity,
suppose that there exists a semi-canonical cover V for (X X I, X,). Put

A, = 7(V|X,) (= {7(VNnX,):VeET))

forn=1,2,.... Then {U,: n=1, 2,...} is clearly a sequence of open
covers of X.

Let us show that, for each point x € X, the system {Stz(x, U,): n=1,
2,...} forms a neighborhood base at x, where St%(x, AU) denotes the set
St(St(x, AU), ). Then X is metrizable by a theorem of K. Morita [10]. To
complete the proof, let x be any point of X and G an arbitrary neighborhood
of x in X. Since V is a semi-canonical cover for (X X I, X,), there exist a
neighborhood H, of x in X and a positive integer m such that St(H, X I,
Y) € G X I holds. Again, for the neighborhood H, of x there exist a
neighborhood H, of x in X and a positive integer n such that n > m and
St(H, X I, V)c H,x I. Now, let us show St}x, A,) C G. Pick an
arbitrary point y in St*(x, Q). Then there are two members U, U’ of 9, with
x€U, yeU and UN U’ # @. Let z be a point of U N U’. By the
definition of @, there exist ¥, ¥’ in V such that

U=7(VnNnX,) and U =a(V' N X,).
Hence, (x, 1/n) € V, (z,1/n) € V N V' and (y, 1/n) € V' hold. The first
inclusion (x, 1/n) € V implies V C H, X I, because (x, 1/n) belongs to
H, X I,; the second one implies V' C G X I, because (z, 1/n) € V shows
(z,1/n) € Hy X I,and (z, 1/n) € V'yields V' N (H, X 1,) # D; and, as a
consequence, the last inclusion (y, 1/n) € V' implies y € G, which com-
pletes the proof.

3. Some lemmas.

LEMMA 1. Let X be a space. If the pair (X X I, {(x, 0)}) is semi-canonical
Jor every point x € X, then X is a regular space.

! A continuous map f: X — Y is called compact-covering if every compact subset of Y is the
image of some compact subset of X.



THE SEMI-CANONICAL PROPERTY 231

ProOF. Using the same notations as in the proof of Theorem 1, it has been
shown that, for a given point x of X and an arbitrary neighborhood G of x,
there exists an open cover A, of X such that St)(X, QL) C G holds. Clearly,
St(x, Q) is a neighborhood of x, whose closure is contained in St*(x, AU,)
and hence in G. This proves that X is a regular space.

If A C X, then an X-base for A is a collection A of open subsets of X such
that, if x € 4 and V is a neighborhood of x in X, then x € U c V for some
Ue.

LEMMA 2. Let X be a regular (T,) space and K a compact subset of X. If
there exists a countable X-base for K, then there exists an X-base U 2.\, for
K such that

0)) @1 is a finite collection whose union covers K forn = 1,2, ...,

(P PP, )refines?P, forn=12,..., and

(3) for each point x of K and each neighborhood G of x in X, there exist a
positive integer n and a neighborhood H of x in X such that St (H, ¥9,) C G.

ProOF. Let % be the given countable X-base for K. Since B|K is a
countable base for X itself, K is metrizable. Hence, for any subset E of K, the
diameter §(E) of E is well defined and also, for any cover & of K, the
mesh & = sup{8(E); E € &} is well defined.

For each n, let A, be a finite subcollection of B such that

1, U, covers K, and

(2), mesh AU, |K < 1/2".

Let {V,: n=1,2,...} be the set of all finite subcollections of B, each of
which forms a minimal cover with respect to K; that is, any proper subcol-
lection of V, does not cover K for n=1, 2,.... Put W, =AU A YV,
={UnVv:veq,VeVpPandW,,, = W, AN U,sy AN V,,, forn=
1, 2,.... Then each °Uf, is a finite collection of open subsets of X whose
union covers K.

Next, by induction on n, let us construct a finite collection %, of closed
subsets of K, a finite collection %, of open subsets of X and a function ¢,
from %, onto 9@, such that the following conditions are satisfied:

(3), %, is a closed cover of K which refines W, A\ &,_,, where P, = {X},

@), @, refines W, A ?,_,,

(5),if F € %, then F C ,(F),

©6),if FEF,and FCc0€ UZ]P, U U (W U V), then ¢,(F)CO,
and

M,if FN F' = O, theng,(F) N ¢,(F')=Qfor F, F' € 9,.

Let W, = {W,, ..., W,). Since W, covers K and K is normal, there exists
a closed cover %, = {F,,..., F,}) of Ksuch that F, c W,fori=1,..., k.
Hence ¥, satisfies condition (3),. Since X is regular and %, is a finite
collection, each member of which is compact, and since U, and V; are also
finite collections, it is easy to see that the function @, and ?, = ¢,(%,) are
well defined to satisfy conditions (4),—(7),, as well. The situation in each step
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is the same as above, and thus %,, ¢, and &, are all constructed quite
similarly.

Now, it remains to show that the sequence {¥,: n=1, 2,...} is the
required one in Lemma 2. Since %, is finite and satisfies (3), and (5),, &,
satisfies the condition (1). By (3), and (6),, &, satisfies the condition (2). To
prove that {?,: n =1, 2, ...} satisfies the condition (3), let x be any point
of K and G an arbitrary neighborhood of x in X. Since % is an X-base for X,
there exists a B, € % such that x € B, C G.2 Let V be a finite subcollection
of b which is a minimal cover with respect to K and which keeps B, as the
only member of <V containing x. Since K is a compact T, space and since %
is an X-base for K, such V certainly exists; further, for some n, V = V.

Let Fy € ¥, be a member with x € F,. Then F, C B, holds, because ¥,
refines U, which refines V, and B, is the only member of V" containing x;
and also, by (5), and (6),,, the inclusions F, C ¢,(F;) C B, hold. Since ¢,(Fy)
is an open set containing x, there exists a postive integer m such that m > n
and d(x, K — ¢,(Fp)) > 1/2", where d denotes the metric function on X.
Since %,,,, is a cover of K by (3),,, there exists an F, € ¥, ., containing
x. To complete the proof, it suffices to show that

St(‘pm+l(Fl )’ @m+l) c (pn(FO)’

because ¢,,, ;(F)) is an open set in X containing x and ¢,(F) is contained in
By, which is contained in G. Let P be an arbitrary member of %,,,, and F
the corresponding member of %,,,, by P = ¢, (F). If P N @, (F) # 9,
then by (7),,+1, F N F, # @. Since F,, ., refines ¥, ., by (5),,4, and ?,,,,
refines U, ., by (4),,,, and since U5, , refines U, , whose mesh restrict-
ing to K is less than 1/2™*!, the diameter 8§ (F U F)) is less than 1/2™. Since
x belongs to F}, by the choice of m, F U F, C ¢,(F,) holds. Again by (6),, .,
O+ 1(F) C 9,(Fp) and thus P C ¢,(F) holds, which completes the proof.

LEMMA 3. Let X be a regular (T,) space and K a compact subset of X. If
there exists a countable X-base for K, then (X, K) is a semi-canonical pair.

PrOOF. Let UZ_, 9, be an X-base for K obtained by Lemma 2. For each
n,put G, = U{P: P € ?,}. Then, by conditions (1) and (2) in Lemma 2,
G,,,CG,forn=1,2,... and K c N®,G,, and by condition (3) and by
the fact that K is compact it is easily seen that K = N, G,

Now, put W, = {X — G,} and V, = @, (G, — G,,») forn=l, 2,...,
and put V= UZ,V,. Then it will be shown that ¥ is a semi-canonical
cover for (X, K). Clearly, V' is an open cover of X — K. To complete the
proof, let x be any point of K and U an arbitrary neighborhood of x in X. By
condition (3) in Lemma 2, there exist a positive integer n and a neighborhood
H of x in X such that St(H, ®,)c U. Put W= H N G,,,. Then W is a
neighborhood of x in X such that W N V=0 for each Ve urZlv.

2 If K is singleton, then U 2,9, is easily chosen from the given countable X-base for X,

because X is regular. So, assuming that X is not a singleton, By is picked out from % such that
K- B,+ 9.
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Therefore

SYw, V) = St( w, U ‘V,.) C St( w, U €P,.) CSYH,9)cU

i>n i>n
by condition (2) in Lemma 2, and that completes the proof.

4. Proofs of Theorems 2 and 3. The following characterization of the
compact-covering open images of metric spaces, due to E. Michael and K.
Nagami [9] will be used in the proof of Theorem 2.

THEOREM M-N (E. MicHAEL AND K. Nacami).? For a T, space X, the
Jollowing conditions are equivalent:

(1) X is the compact-covering open image of a metric space.

(2) Every compact subset of X is metrizable and of countable character in X .*

(3) Every compact subset of X has a countable X-base.

PROOF OF THEOREM 2. Necessity. Let (X X I, K X {0}) be a semi-canoni-
cal pair for any compact subset K of X. Then X is a regular space by Lemma
1 putting X in the assumption a singleton. Next, it will be shown that each
compact subset K of X has a countable X-base. Then X is the compact-
covering open image of a metric space by Theorem M-N.

To complete the proof, let K be a compact subset of X. By the assumption,
there exists a semi-canonical cover V for (X X I, K X {0}). Put V, the finite
subcollection of V" which covers K X {1/n}, and put U, = #(V,|X,) for
n=12....

Then it is easy to show that the collection U . ,%U, is the required X-base
for K, by the same technique as in the proof of Theorem 1.

Sufficiency. It is easy to check that, if X is the compact-covering open
image of a metric space, then so is X X I. Hence, for any compact subset K
of X, K X {0} has a countable X X I-base by Theorem M-N, and thus
(X X I, K X {0}) is a semi-canonical pair by Lemma 3, which completes the
proof.

PROOF OF THEOREM 3. Necessity. By Lemma 1, X is a regular space. The
first countability of X is proved by the same technique as in the proof of the
necessity in Theorem 2, replacing K by a singleton.

Sufficiency. If X is a regular (T) first countable space, then sois X X I. In
general, it is easily seen that, in any regular (7)) first countable space Y, the
pair (Y, {y}) is always semi-canonical for each point y € Y. This completes
the proof.

5. Comments. 1. From the proofs of Theorems 1, 2 and 3, it is easy to see
that, in the conditions of these theorems, the closed interval I may be

3 The fact (2) - (3) was proved by M. M. Coban [5]; for completely regular space X, it had
previously been obtained by A. V. Arhangel’skii [1].

4 A set K C X is of countable character in X if there is a countable outer base {U,: n = 1,
2,...}atKin X (ie. each U, is open and contains K, and every open set containing K contains
some U,) (cf. [9]).



234 A. OKUYAMA AND Y. YASUI

replaced by any space containing a convergent sequence. By such replace-
ment in Theorem 1, one obtains a slight modification of the proof of the
following theorem due to D. M. Hyman [7], remembering two facts: (1) The
closed image of a metric space is a Fréchet-Urysohn space (cf. [8]); and (2)
any pair (X, A) is semi-canonical if X is the closed image of a metric space

(cf. [7]).

THEOREM (D. HYMAN). If X and Y are nondiscrete spaces and if X X Y is
the closed image of a metric space, then X and Y are metrizable.

2. The semi-canonical property need not be two-productive. For example,
let X =N U {p} be a subspace of Stone-Cech compactification SN of N
(={1,2,...}) withp € BN — N. Then it is well known that X is not first
countable at p, and thus (X X I, {(p, 0)}) is not semi-canonical by Theorem
3. However, it is easy to see that any pair (X, A) is always semi-canonical.

This example also shows that, in the conditions of Theorems 1 and 2,
X X I cannot be replaced by X. Clearly, then, the semi-canonical property in
X is very different from the semi-canonical property in X X I.
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