ON THE SEMI-CANONICAL PROPERTY IN THE PRODUCT SPACE $X \times I$

A. OKUYAMA AND Y. YASUI

ABSTRACT. As one of the several properties in generalized metric spaces, the semi-canonical property has been discussed from the viewpoint of the extension of mappings. In this paper, that property will be discussed in product space $X \times I$ and reduced to a property of X.

- **1. Introduction.** By a pair (X, A) we mean a topological space X with a closed subset A of X. Let (X, A) be a pair. As in [6], a collection $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of open subsets of X is called a *semi-canonical cover for* (X, A) if
 - (1) $\bigcup_{\lambda \in \Lambda} V_{\lambda} = X A$, and
- (2) for each $x \in A$ and each neighborhood U of x in X there exists a neighborhood W of x in X such that $St(W, \mathcal{V}) \subset U$, where

$$St(W, \mathcal{V}) = \bigcup \{ V \in \mathcal{V} : V \cap W \neq \emptyset \}$$

denotes the star of W with respect to \mathcal{V} .

If a semi-canonical cover exists for (X, A), (X, A) is called a semi-canonical pair.

It was proved by D. Hyman ([6], [7]) that (X, A) is a semi-canonical pair if X is the image of a metric space by a closed continuous map. It is also mentioned by M. Cauty [3] that, if X is a stratifiable space (cf. [2]), then any pair (X, A) is semi-canonical. However, quite recently S. San-ou [11] pointed out that Cauty's statement was false by constructing an M_1 -space X (cf. [4]) such that (X, A) was not semi-canonical for some closed subset A of X.

The purpose of this paper is to discuss the semi-canonical property in the product space $X \times I$ of a T_1 space X with the unit closed interval I and to reduce it to a property in X.

THEOREM 1. Let X be a T_1 space. Then $(X \times I, X \times \{0\})$ is a semi-canonical pair if and only if X is metrizable.

By Theorem 1 it can be easily seen that, if X is any nonmetrizable M_1 -space, then $X \times I$ is an M_1 -space such that $(X \times I, X \times \{0\})$ is never semi-canonical.

Received by the editors November 8, 1976 and, in revised form, April 3, 1977.

AMS (MOS) subject classifications (1970). Primary 54E35; Secondary 54D30.

Key words and phrases. Semi-canonical cover, semi-canonical pair, M_1 -space, metric space, compact-covering map, open map, X-base, countable character, first countable space.

[©] American Mathematical Society 1978

THEOREM 2. Let X be a T_1 space. Then $(X \times I, K \times \{0\})$ is a semi-canonical pair for each compact subset K if and only if X is a regular space which is a compact-covering, open image of a metric space.

THEOREM 3. Let X be a T_1 space. Then $(X \times I, \{(x, 0)\})$ is a semi-canonical pair for each point $x \in X$ if and only if X is a regular, first countable space.

Throughout this paper, the following notations will be used: X_0 and X_n denote the subspaces $X \times \{0\}$ and $X \times \{1/n\}$ of $X \times I$ for $n = 1, 2, \ldots; \pi$ denotes the projection from $X \times I$ onto X; and I_n denotes the subspace [0, 1/n] of I for $n = 1, 2, \ldots$

All spaces in this paper are T_1 , and all maps are continuous.

2. Proof of Theorem 1. The sufficiency of the condition is clear, since every pair (X, A) in a metric space X is semi-canonical (cf. [6]). To prove necessity, suppose that there exists a semi-canonical cover \mathcal{V} for $(X \times I, X_0)$. Put

$$\mathfrak{A}_n = \pi(\mathcal{V}|X_n) \quad \big(= \big\{ \pi(V \cap X_n) \colon V \in \mathcal{V} \big\} \big)$$

for $n = 1, 2, \ldots$ Then $\{ {}^{\circ}U_n : n = 1, 2, \ldots \}$ is clearly a sequence of open covers of X.

Let us show that, for each point $x \in X$, the system $\{St^2(x, \mathfrak{A}_n): n = 1, 2, \dots\}$ forms a neighborhood base at x, where $St^2(x, \mathfrak{A})$ denotes the set $St(St(x, \mathfrak{A}), \mathfrak{A})$. Then X is metrizable by a theorem of K. Morita [10]. To complete the proof, let x be any point of X and G an arbitrary neighborhood of x in X. Since \mathbb{Y} is a semi-canonical cover for $(X \times I, X_0)$, there exist a neighborhood H_1 of x in X and a positive integer m such that $St(H_1 \times I_m, \mathbb{Y}) \subset G \times I$ holds. Again, for the neighborhood H_1 of x there exist a neighborhood H_2 of x in X and a positive integer n such that $n \ge m$ and $St(H_2 \times I_n, \mathbb{Y}) \subset H_1 \times I$. Now, let us show $St^2(x, \mathbb{Q}_n) \subset G$. Pick an arbitrary point y in $St^2(x, \mathbb{Q}_n)$. Then there are two members U, U' of \mathbb{Q}_n with $x \in U$, $y \in U'$ and $U \cap U' \ne \emptyset$. Let z be a point of $U \cap U'$. By the definition of \mathbb{Q}_n there exist V, V' in \mathbb{Y} such that

$$U = \pi(V \cap X_n)$$
 and $U' = \pi(V' \cap X_n)$.

Hence, $(x, 1/n) \in V$, $(z, 1/n) \in V \cap V'$ and $(y, 1/n) \in V'$ hold. The first inclusion $(x, 1/n) \in V$ implies $V \subset H_1 \times I$, because (x, 1/n) belongs to $H_2 \times I_n$; the second one implies $V' \subset G \times I$, because $(z, 1/n) \in V$ shows $(z, 1/n) \in H_1 \times I_n$ and $(z, 1/n) \in V'$ yields $V' \cap (H_1 \times I_n) \neq \emptyset$; and, as a consequence, the last inclusion $(y, 1/n) \in V'$ implies $y \in G$, which completes the proof.

3. Some lemmas.

LEMMA 1. Let X be a space. If the pair $(X \times I, \{(x, 0)\})$ is semi-canonical for every point $x \in X$, then X is a regular space.

¹ A continuous map $f: X \to Y$ is called *compact-covering* if every compact subset of Y is the image of some compact subset of X.

PROOF. Using the same notations as in the proof of Theorem 1, it has been shown that, for a given point x of X and an arbitrary neighborhood G of x, there exists an open cover \mathfrak{A}_n of X such that $\mathrm{St}^2(X, \mathfrak{A}_n) \subset G$ holds. Clearly, $\mathrm{St}(x, \mathfrak{A}_n)$ is a neighborhood of x, whose closure is contained in $\mathrm{St}^2(x, \mathfrak{A}_n)$ and hence in G. This proves that X is a regular space.

If $A \subset X$, then an X-base for A is a collection $\mathfrak A$ of open subsets of X such that, if $x \in A$ and V is a neighborhood of x in X, then $x \in U \subset V$ for some $U \in \mathfrak A$.

LEMMA 2. Let X be a regular (T_1) space and K a compact subset of X. If there exists a countable X-base for K, then there exists an X-base $\bigcup_{n=1}^{\infty} \mathfrak{I}_n$ for K such that

- (1) \mathfrak{P}_n is a finite collection whose union covers K for $n = 1, 2, \ldots$,
- (2) $\{\overline{P}: P \in \mathcal{P}_{n+1}\}$ refines \mathcal{P}_n for $n = 1, 2, \ldots$, and
- (3) for each point x of K and each neighborhood G of x in X, there exist a positive integer n and a neighborhood H of x in X such that $St(H, \mathcal{P}_n) \subset G$.

PROOF. Let \mathfrak{B} be the given countable X-base for K. Since $\mathfrak{B}|K$ is a countable base for K itself, K is metrizable. Hence, for any subset E of K, the diameter $\delta(E)$ of E is well defined and also, for any cover \mathfrak{E} of K, the mesh $\mathfrak{E} = \sup\{\delta(E); E \in \mathfrak{E}\}$ is well defined.

For each n, let \mathfrak{A}_n be a finite subcollection of \mathfrak{B} such that

- $(1)_n \mathcal{Q}_n$ covers K, and
- $(2)_n \text{ mesh } \mathfrak{A}_n | K < 1/2^n.$

Let $\{ \mathcal{V}_n : n = 1, 2, \dots \}$ be the set of all finite subcollections of \mathfrak{B} , each of which forms a minimal cover with respect to K; that is, any proper subcollection of \mathcal{V}_n does not cover K for $n = 1, 2, \dots$ Put $\mathfrak{W}_1 = \mathfrak{A}_1 \wedge \mathcal{V}_1$ (= $\{U \cap V : U \in \mathfrak{A}_1, V \in \mathcal{V}_1 \}$) and $\mathfrak{W}_{n+1} = \mathfrak{W}_n \wedge \mathfrak{A}_{n+1} \wedge \mathcal{V}_{n+1}$ for $n = 1, 2, \dots$ Then each \mathfrak{W}_n is a finite collection of open subsets of X whose union covers K.

Next, by induction on n, let us construct a finite collection \mathfrak{T}_n of closed subsets of K, a finite collection \mathfrak{T}_n of open subsets of X and a function φ_n from \mathfrak{T}_n onto \mathfrak{T}_n such that the following conditions are satisfied:

- (3)_n $\widehat{\mathcal{F}}_n$ is a closed cover of K which refines $\mathfrak{V}_n \wedge \mathfrak{P}_{n-1}$, where $\mathfrak{P}_0 = \{X\}$,
- $(4)_n \, \mathcal{P}_n \text{ refines } \mathcal{W}_n \wedge \mathcal{P}_{n-1},$
- $(5)_n$ if $F \in \mathcal{F}_n$, then $F \subset \varphi_n(F)$,
- (6)_n if $F \in \mathcal{F}_n$ and $F \subset 0 \in \bigcup_{i=1}^{n-1} \mathcal{F}_i \cup \bigcup_{i=1}^n (\mathfrak{A}_i \cup \mathcal{V}_i)$, then $\overline{\varphi_n(F)} \subset 0$, and
 - (7)_n if $F \cap F' = \emptyset$, then $\varphi_n(F) \cap \varphi_n(F') = \emptyset$ for $F, F' \in \mathfrak{F}_n$.

Let $\mathfrak{V}_1 = \{W_1, \ldots, W_k\}$. Since \mathfrak{V}_1 covers K and K is normal, there exists a closed cover $\mathfrak{F}_1 = \{F_1, \ldots, F_k\}$ of K such that $F_i \subset W_i$ for $i = 1, \ldots, k$. Hence \mathfrak{F}_1 satisfies condition $(3)_1$. Since K is regular and \mathfrak{F}_1 is a finite collection, each member of which is compact, and since \mathfrak{V}_1 and \mathfrak{V}_1 are also finite collections, it is easy to see that the function φ_1 and $\mathfrak{F}_1 = \varphi_1(\mathfrak{F}_1)$ are well defined to satisfy conditions $(4)_1$ – $(7)_1$, as well. The situation in each step

is the same as above, and thus \mathfrak{T}_n , φ_n and \mathfrak{T}_n are all constructed quite similarly.

Now, it remains to show that the sequence $\{\mathcal{P}_n: n=1, 2, \dots\}$ is the required one in Lemma 2. Since \mathcal{P}_n is finite and satisfies $(3)_n$ and $(5)_n$, \mathcal{P}_n satisfies the condition (1). By $(3)_n$ and $(6)_n$, \mathcal{P}_n satisfies the condition (2). To prove that $\{\mathcal{P}_n: n=1, 2, \dots\}$ satisfies the condition (3), let x be any point of K and G an arbitrary neighborhood of x in X. Since \mathcal{B} is an X-base for K, there exists a $B_0 \in \mathcal{B}$ such that $x \in B_0 \subset G$. Let \mathcal{V} be a finite subcollection of \mathcal{B} which is a minimal cover with respect to K and which keeps B_0 as the only member of \mathcal{V} containing x. Since K is a compact T_2 space and since \mathcal{B} is an X-base for K, such \mathcal{V} certainly exists; further, for some n, $\mathcal{V} = \mathcal{V}_n$.

Let $F_0 \in \mathcal{F}_n$ be a member with $x \in F_0$. Then $F_0 \subset B_0$ holds, because \mathcal{F}_n refines \mathcal{V}_n which refines \mathcal{V}_n and B_0 is the only member of \mathcal{V} containing x; and also, by $(5)_n$ and $(6)_n$, the inclusions $F_0 \subset \varphi_n(F_0) \subset B_0$ hold. Since $\varphi_n(F_0)$ is an open set containing x, there exists a postive integer m such that $m \ge n$ and $d(x, K - \varphi_n(F_0)) > 1/2^m$, where d denotes the metric function on K. Since \mathcal{F}_{m+1} is a cover of K by $(3)_{m+1}$, there exists an $F_1 \in \mathcal{F}_{m+1}$ containing x. To complete the proof, it suffices to show that

$$\operatorname{St}(\varphi_{m+1}(F_1), \mathfrak{P}_{m+1}) \subset \varphi_n(F_0),$$

because $\varphi_{m+1}(F_1)$ is an open set in X containing x and $\varphi_n(F_0)$ is contained in B_0 , which is contained in G. Let P be an arbitrary member of \mathfrak{P}_{m+1} and F the corresponding member of \mathfrak{F}_{m+1} by $P = \varphi_{m+1}(F)$. If $P \cap \varphi_{m+1}(F_1) \neq \emptyset$, then by $(7)_{m+1}$, $F \cap F_1 \neq \emptyset$. Since \mathfrak{F}_{m+1} refines \mathfrak{P}_{m+1} by $(5)_{m+1}$ and \mathfrak{P}_{m+1} refines \mathfrak{V}_{m+1} by $(4)_{m+1}$, and since \mathfrak{V}_{m+1} refines \mathfrak{V}_{m+1} whose mesh restricting to K is less than $1/2^{m+1}$, the diameter $\delta(F \cup F_1)$ is less than $1/2^m$. Since x belongs to F_1 , by the choice of m, $F \cup F_1 \subset \varphi_n(F_0)$ holds. Again by $(6)_{m+1}$, $\varphi_{m+1}(F) \subset \varphi_n(F_0)$ and thus $P \subset \varphi_n(F_0)$ holds, which completes the proof.

LEMMA 3. Let X be a regular (T_1) space and K a compact subset of X. If there exists a countable X-base for K, then (X, K) is a semi-canonical pair.

PROOF. Let $\bigcup_{n=1}^{\infty} \mathfrak{P}_n$ be an X-base for K obtained by Lemma 2. For each n, put $G_n = \bigcup \{P: P \in \mathfrak{P}_n\}$. Then, by conditions (1) and (2) in Lemma 2, $\overline{G}_{n+1} \subset G_n$ for $n = 1, 2, \ldots$ and $K \subset \bigcap_{n=1}^{\infty} G_n$, and by condition (3) and by the fact that K is compact, it is easily seen that $K = \bigcap_{n=1}^{\infty} G_n$.

Now, put $\[\mathbb{V}_0 = \{X - \overline{G}_2\} \]$ and $\[\mathbb{V}_n = \mathfrak{P}_n | (G_n - G_{n+2}) \]$ for $n = 1, 2, \ldots$, and put $\[\mathbb{V} = \bigcup_{n=0}^{\infty} \mathbb{V}_n \]$. Then it will be shown that $\[\mathbb{V} \]$ is a semi-canonical cover for (X, K). Clearly, $\[\mathbb{V} \]$ is an open cover of X - K. To complete the proof, let x be any point of K and U an arbitrary neighborhood of x in X. By condition (3) in Lemma 2, there exist a positive integer n and a neighborhood H of x in X such that $St(H, \mathfrak{P}_n) \subset U$. Put $W = H \cap G_{n+1}$. Then W is a neighborhood of x in X such that $W \cap V = \emptyset$ for each $V \in \bigcup_{i=1}^{n-1} \mathbb{V}_i$.

² If K is singleton, then $\bigcup_{n=1}^{\infty} \mathcal{P}_n$ is easily chosen from the given countable X-base for K, because X is regular. So, assuming that K is not a singleton, B_0 is picked out from \mathfrak{B} such that $K - B_0 \neq \emptyset$.

Therefore

$$\operatorname{St}(W, \, \mathcal{V}) = \operatorname{St}\left(W, \, \bigcup_{i \geq n} \, \mathcal{V}_i\right) \subset \operatorname{St}\left(W, \, \bigcup_{i \geq n} \, \mathcal{P}_i\right) \subset \operatorname{St}(H, \, \mathcal{P}_n) \subset U$$

by condition (2) in Lemma 2, and that completes the proof.

4. Proofs of Theorems 2 and 3. The following characterization of the compact-covering open images of metric spaces, due to E. Michael and K. Nagami [9] will be used in the proof of Theorem 2.

THEOREM M-N (E. MICHAEL AND K. NAGAMI).³ For a T_2 space X, the following conditions are equivalent:

- (1) X is the compact-covering open image of a metric space.
- (2) Every compact subset of X is metrizable and of countable character in X.4
- (3) Every compact subset of X has a countable X-base.

PROOF OF THEOREM 2. Necessity. Let $(X \times I, K \times \{0\})$ be a semi-canonical pair for any compact subset K of X. Then X is a regular space by Lemma 1 putting K in the assumption a singleton. Next, it will be shown that each compact subset K of X has a countable X-base. Then X is the compact-covering open image of a metric space by Theorem M-N.

To complete the proof, let K be a compact subset of X. By the assumption, there exists a semi-canonical cover \mathcal{V} for $(X \times I, K \times \{0\})$. Put \mathcal{V}_n the finite subcollection of \mathcal{V} which covers $K \times \{1/n\}$, and put $\mathcal{U}_n = \pi(\mathcal{V}_n|X_n)$ for $n = 1, 2, \ldots$

Then it is easy to show that the collection $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$ is the required X-base for K, by the same technique as in the proof of Theorem 1.

Sufficiency. It is easy to check that, if X is the compact-covering open image of a metric space, then so is $X \times I$. Hence, for any compact subset K of X, $K \times \{0\}$ has a countable $X \times I$ -base by Theorem M-N, and thus $(X \times I, K \times \{0\})$ is a semi-canonical pair by Lemma 3, which completes the proof.

PROOF OF THEOREM 3. Necessity. By Lemma 1, X is a regular space. The first countability of X is proved by the same technique as in the proof of the necessity in Theorem 2, replacing K by a singleton.

Sufficiency. If X is a regular (T_1) first countable space, then so is $X \times I$. In general, it is easily seen that, in any regular (T_1) first countable space Y, the pair $(Y, \{y\})$ is always semi-canonical for each point $y \in Y$. This completes the proof.

5. Comments. 1. From the proofs of Theorems 1, 2 and 3, it is easy to see that, in the conditions of these theorems, the closed interval I may be

³ The fact (2) \rightarrow (3) was proved by M. M. Coban [5]; for completely regular space X, it had previously been obtained by A. V. Arhangel'skii [1].

⁴ A set $K \subset X$ is of countable character in X if there is a countable outer base $\{U_n: n = 1, 2, \ldots\}$ at K in X (i.e. each U_n is open and contains K, and every open set containing K contains some U_n) (cf. [9]).

replaced by any space containing a convergent sequence. By such replacement in Theorem 1, one obtains a slight modification of the proof of the following theorem due to D. M. Hyman [7], remembering two facts: (1) The closed image of a metric space is a Fréchet-Urysohn space (cf. [8]); and (2) any pair (X, A) is semi-canonical if X is the closed image of a metric space (cf. [7]).

THEOREM (D. HYMAN). If X and Y are nondiscrete spaces and if $X \times Y$ is the closed image of a metric space, then X and Y are metrizable.

2. The semi-canonical property need not be two-productive. For example, let $X = N \cup \{p\}$ be a subspace of Stone-Čech compactification βN of $N \in \{1, 2, ...\}$ with $p \in \beta N - N$. Then it is well known that X is not first countable at p, and thus $(X \times I, \{(p, 0)\})$ is not semi-canonical by Theorem 3. However, it is easy to see that any pair (X, A) is always semi-canonical.

This example also shows that, in the conditions of Theorems 1 and 2, $X \times I$ cannot be replaced by X. Clearly, then, the semi-canonical property in X is very different from the semi-canonical property in $X \times I$.

REFERENCES

- 1. A. V. Arhangel'skii, Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obšč. 13 (1965), 3-55 = Trans. Moscow Math. Soc. 13 (1965), 1-62.
 - 2. C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- 3. M. R. Cauty, Une généralisation du théorème de Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A271-A274.
 - 4. J. G. Ceder, Some generalizations of a metric space, Pacific J. Math. 11 (1961), 105-126.
- 5. M. M. Coban, Perfect mappings and spaces of countable type, Vestnik Moskov. Univ. Ser. I Mat. Meh. 22 (1967), no. 6, 87-93.
- 6. D. M. Hyman, A generalization of the Borsuk-Whitehead-Hanner theorem, Pacific J. Math. 23 (1967), 263-271.
- 7. D. M. Hyman, A note on closed maps and metrizability, Proc. Amer. Math. Soc. 21 (1969), 109-112.
- 8. N. Lasnev, Closed images of metric spaces, Dokl. Akad. Nauk SSSR 170 (1966) = Soviet Math. Dokl. 7 (1966), 1219-1221.
- 9. E. Michael and K. Nagami, Compact-covering images of metric spaces, Proc. Amer. Math. Soc. 37 (1973), 260-266.
- 10. K. Morita, On the simple extension of a space with respect to a uniformity. IV, Proc. Japan Acad. 27 (1951), 632-636.
 - 11. S. San-ou, A note on *E-product*, J. Math. Soc. Japan 29 (1977), 281-285.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, TENNOJI, OSAKA, JAPAN