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THE KNAPP-STEIN DIMENSION THEOREM

FORp-ADIC GROUPS1

ALLAN J. SILBERGER

Abstract. Knapp and Stein have proved for semisimple Lie groups that the

dimension of the commuting algebra of an induced tempered representation

equals the index of a certain reflection group in a larger group. A precise

analogue of their result is stated and proved in this paper for/j-adic groups.

The purpose of this paper is to prove for p-adic groups the analogue of a

theorem due to Knapp and Stein [3] in the case of real semisimple Lie groups.

The Knapp-Stein theorem has precisely-mutatis mutandis-the same state-

ment as we give below. Our proof, which depends upon the Harish-Chandra

commuting algebra theorem [4, Theorem 5.5.3.2], carries over, with only slight

changes, to the real case too.

We wish to thank Nolan Wallach for useful discussions.

1. Some terminology. Let ñ be a nonarchimedean local field and G a

connected reductive ñ-group. Let G denote the group of ß-points of G. In this

paper we employ the terminology and notations of [2] and [4].

Fix a minimal p-pair (F0, A0) (F0 = MqN0) of G and an /l0-good maximal

compact subgroup K of G. Let (F, A) (F = MN) be a semistandardp-pair of

G. Let o* denote the real Lie algebra of A. Let W denote the factor group

NGiA)/M. Assume that a* has a IF-invariant scalar product defined on it.

Let 2r = 2r(F, A) denote the set of positive reduced ,4-roots, 2°(F, A) the

subset consisting of the simple A -roots.

Let a G u G &2iM). Let PF(w) = {s G W\us = w). Let u(w: v) (? G a*)

denote the Harish-Chandra function associated to to and G [2, Theorem 20],

[4, §5.4.3]. It is proved in [4, Corollary 5.4.3.3] (cf. [2, Theorem 24]) that, with

c> 0,

cu(w: v) =   u   |".Q(w: "),
a 62,

where jua(w: v) is the Harish-Chandra function associated to o> and Ma =

ZGiAa) iAa is the maximal subtorus of A in the kernel of the root character

£,). A root a G 2, is called u-special if ua(w: 0) = 0. If a is to-special, then
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there is a reflection sa E W(u>). Let 2" = ± (a E 2r: a co-special). Then 2"

is a root system in a subspace of a* [1, VI, §2, Proposition 9]. We write W"(u>)

for the Weyl group of this root system; W"(u) is the subgroup of W(u)

generated by the set [sa: a to-special}.

Let CjS(co) denote the class of the induced representation ttPu =

Ind^(5^/2ö). Then C^(co) is unitary and independent of the choice of P E

9(A) or w in a W-orbit.

2. The theorem. In the following we assume that the c-functions and °c-

functions, as well as the space L(co, P), are associated to a fixed smooth

unitary double representation of K which satisfies associativity conditions.

Theorem. The commuting algebra of the class C^(co) has dimension [ W(u):

W"(u)].

Proof. Harish-Chandra's commuting algebra theorem implies that, for any

P E 9(A), the mapping s h» °cP\P(s: co), a homomorphism from W(u) to

the group of unitary automorphisms of the algebra L(co, P), may be regarded

as a mapping onto a set of generators for the commuting algebra of

lnd^(8P/2o) (o E co). We prove the theorem in two steps: (1) °cP\P(s: co) is the

identity on L(u, P) when í E W"(u); (2) the dimension of the commuting

algebra is at least [W(u): W"(u>)\

For (1) it is enough to show that °cP\P(s: co) — I whenever 5 is the reflection

sa associated to an co-special root a. Given any such a, we may choose

P, E 9(A) such that a E 2°(P„ A). It is enough to show that

since

°cPlP(s: to) = °cPIPi (1: to) °cP¡lP¡ (s: w) °cP¡¡P(l: to)   and

I = °cnP(l: u) = °cPlP¡(l: u)°cP¡iP(l: o);

both relations follow from the general transformation formulas for the °c-

functions [2, §§11-12], [4, §5.2.4].

Thus, without loss of generality, assume that a E 2 °(P, A). Let Aa and Ma

be as before. Then P n Ma = *Pa is a maximal parabolic subgroup of Ma.

Since pa(u: 0) = 0, the representation lnd¥P (8VP2o) is irreducible,

so °c ,Pj,p(sa: u) = 7L(u .p y On the other hand, by [4, Theorem 5.3.5.3(4)],

%\p(V «) = °c «/-J .,. (Sa- »)L(«,/>),

so "c^i^ii: w) = IL(u P) for all í £ W"(u), as required.

To prove (2) we shall argue as follows. Let ttPu = lndP(8p/2o) act in a

vector space %. Consider the tempered Jacquet module J)C =„(%/%(P))

associated to ttPu, with ttPu the representation of Äf on %. It is known [4,

Theorem 5.4.1.1] that % has a composition series of length [W(G/A)], whose

composition factors, counted with multiplicities, are {8p/2us)setv^G,Ay

Furthermore, it follows from the fact that discrete series are projectives in the
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category of tempered modules (with a fixed central exponent) that % is a

direct sum of isotypic submodules. Let 3C(to) be the submodtale all of whose

components are of class 8p/2u. The composition series for 9C(to) has length

[W(to)]. The Frobenius reciprocity theorem [4, Theorem 1.7.10] implies that

8p/2u> occurs as a quotient in OC(co) a number of times equal to the dimension

of thecommuting algebra of C^(to). Thus, to prove (2), it is sufficient to show

that %(to) contains 8p/2u as a quotient at least [IF(to): W'iu)] times. For

this, it is obviously_sufficient to show that the multiplicity of the central

character 8p/2xu in OC(to) is no greater than [ IF "(to)].

We shall prove, instead, an equivalent fact involving the Eisenstein integral

and the weak constant term. Let if G L (to, P ) and consider the Eisenstein

integral £(F : if : v). The weak constant term wEPiP : yp : v) is holomorphic

in a neighborhood U of a* [4, Corollary 5.3.3.5]. For v E U in general

position we may write

WEP (F : if : v) =       2        Cp\p (s '■ « : "W%r-
jE W{G/A)

For any s E WiG/A), the function

cPlpis : to : v) = scP,-.^(l : u : v) - s     II      c*(l : « : *),
«eZr(/VO

where each function ca+(l : to : v) or ca~(l : to : p) is a c-function associated to

a pair (Afa, A/) in which A/a is a reductive subgroup of G containing

(F D Afa, A) as a maximal p-pair [4, §5.4.3]. Each function c^ is essentially a

meromorphic function of a single complex variable, holomorphic for all

v E U, unless a is an to-special root; if a is an to-special root, then the

hyperplane Ha passing through v = 0 and orthogonal to a is singular for c*.

This  implies   that  the   function  cP\Pis : to : v)  is  holomorphic  on   U -

We claim that, to prove (2), it is sufficient to show that the function

$(% ") =     2      cp\p (sso '■ w : "WaW
jgrw

is holomorphic at v = 0 for any s0 E ¡Via). If this is so, then one can show

exactly as in [4, §§5.3.2-3] (and we shall not give the details here) that

n,g w"(a) (Xts^io) ~ P(a))^(J0' v) is identically zero near v = 0 and, as a

consequence, that the multiplicity of the exponent xw is no greater than

[IP"(co)]. However, by [4, Corollary 3.2.5(3)], the multiplicity of the exponent

Xa related to the constant term is the same as the multiplicity of 8p/2xu in the

Jacquet space. Thus, it follows easily that, since ó^^to occurs [ ̂ (to)] times in

the composition series of OC(to), S^to actually occurs as a quotient at least

[IF(to): ^"(to)] times, as required.

Let us show that $(i0, v) is holomorphic at v = 0. It is enough to check this

for any if G L(to, P). As is well known, we may (and do) choose if such that

£(F: if: v) = F(F: if: sv) for all s E IF (to) and v E a*. Observe that, in this
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case, cP\P(s : co : tp)xpxs,¡, = cP\P(st : co : p)xpXs„, for all s, t E W(u) and p E

a*, so 0(1, s0p) = 0(s0, p). Thus, it is sufficient to check that 0(1, p) is

holomorphic at p = 0.

We shall need the fact that the weak constant term takes its image in the

direct sum ®selv/wi y3,(M, t^)^. This is proved in the supercuspidal case

in [4, Corollary 5.4.4.6]; the proof in the present case is exactly the same and

depends upon the fact, used above, that discrete series are projectives in the

category of tempered admissible modules. As a consequence, any term

EP    (P:*:v)-     S     Ep^P-.xp-.p)

is holomorphic in a neighborhood of p = p0.

We have already observed that the singularities of 0(1, p), if there are any,

lie in U Ha (a E 2"). It follows easily from the Weierstrass Preparation

Theorem that a nonempty zero set of a holomorphic function defined in an

open set U of a complex space is a union of hypersurfaces in U. Therefore, it

is sufficient, in order to show that 0(1, p) is holomorphic at p = 0, to show

that the singularities lie in a subset of codimension at least two.

Let a E 2" and p0 E Ha - Ua^aHa.. We shall show that 0(1, p) is

holomorphic at p = p0. To see this, note first that rV(w„^ n W"(u0) =

{1, sa), which follows from well-known properties of Weyl groups. We may

choose representatives sx, . . . ,sr E ^"(co) \ W(u) such that s¡ and sas¡ fix Ha

for all / = 1, . . . , r. There is a neighborhood V of p0 on which

r

EP,»,SP '• ̂  : ") =   2 (CP\p(Si  ' W : ")*X,r +  CP\p{ScSi '■ W : "WXyir)
i= 1

is holomorphic. For all p E V n Ha and i = I, . . . , r.  ■

Cp\p 0; : « : v)4>Xs„ + Cp\p (V. : w : »WXs.s,*

= cp\p(1 ■ w : v)xpx, + cP]P(sa : co : v)\px*.,>

from which it follows that cP\P(l : co : p)xpx„ + cP\P(sa : co : p)xpXsaP and,

hence, 0(1, j») is holomorphic near p = p0. We conclude that 0(1, p) is, in

fact, holomorphic at p — 0. This proves the theorem.
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