THE KNAPP-STEIN DIMENSION THEOREM FOR p-ADIC GROUPS¹

ALLAN J. SILBERGER

ABSTRACT. Knapp and Stein have proved for semisimple Lie groups that the dimension of the commuting algebra of an induced tempered representation equals the index of a certain reflection group in a larger group. A precise analogue of their result is stated and proved in this paper for p-adic groups.

The purpose of this paper is to prove for p-adic groups the analogue of a theorem due to Knapp and Stein [3] in the case of real semisimple Lie groups. The Knapp-Stein theorem has precisely—mutatis mutandis—the same statement as we give below. Our proof, which depends upon the Harish-Chandra commuting algebra theorem [4, Theorem 5.5.3.2], carries over, with only slight changes, to the real case too.

We wish to thank Nolan Wallach for useful discussions.

1. Some terminology. Let Ω be a nonarchimedean local field and G a connected reductive Ω -group. Let G denote the group of Ω -points of G. In this paper we employ the terminology and notations of [2] and [4].

Fix a minimal p-pair (P_0, A_0) $(P_0 = M_0 N_0)$ of G and an A_0 -good maximal compact subgroup K of G. Let (P, A) (P = MN) be a semistandard p-pair of G. Let α^* denote the real Lie algebra of A. Let W denote the factor group $N_G(A)/M$. Assume that α^* has a W-invariant scalar product defined on it. Let $\Sigma_r = \Sigma_r(P, A)$ denote the set of positive reduced A-roots, $\Sigma^0(P, A)$ the subset consisting of the simple A-roots.

Let $\sigma \in \omega \in \mathcal{E}_2(M)$. Let $W(\omega) = \{s \in W | \omega^s = \omega\}$. Let $\mu(\omega: \nu)$ ($\nu \in \alpha^*$) denote the Harish-Chandra function associated to ω and G [2, Theorem 20], [4, §5.4.3]. It is proved in [4, Corollary 5.4.3.3] (cf. [2, Theorem 24]) that, with c > 0,

$$c\mu(\omega:\nu) = \prod_{\alpha \in \Sigma_r} \mu_{\alpha}(\omega:\nu),$$

where $\mu_{\alpha}(\omega: \nu)$ is the Harish-Chandra function associated to ω and $M_{\alpha} = Z_G(A_{\alpha})$ (A_{α} is the maximal subtorus of A in the kernel of the root character ξ_{α}). A root $\alpha \in \Sigma_r$ is called ω -special if $\mu_{\alpha}(\omega: 0) = 0$. If α is ω -special, then

Received by the editors June 21, 1977.

AMS (MOS) subject classifications (1970). Primary 22E50.

Key words and phrases. Reductive p-adic groups, tempered unitary representations, commuting algebras.

Research partially supported by NSF Grant MCS 76-11624 A01.

there is a reflection $s_{\alpha} \in W(\omega)$. Let $\Sigma'' = \pm \{\alpha \in \Sigma_r : \alpha \text{ ω-special}\}$. Then Σ'' is a root system in a subspace of α^* [1, VI, §2, Proposition 9]. We write $W''(\omega)$ for the Weyl group of this root system; $W''(\omega)$ is the subgroup of $W(\omega)$ generated by the set $\{s_{\alpha} : \alpha \text{ ω-special}\}$.

Let $C_M^G(\omega)$ denote the class of the induced representation $\pi_{P,\omega} = \operatorname{Ind}_P^G(\delta_P^{1/2}\sigma)$. Then $C_M^G(\omega)$ is unitary and independent of the choice of $P \in \mathcal{P}(A)$ or ω in a W-orbit.

2. The theorem. In the following we assume that the c-functions and ${}^{0}c$ -functions, as well as the space $L(\omega, P)$, are associated to a fixed smooth unitary double representation of K which satisfies associativity conditions.

THEOREM. The commuting algebra of the class $C_M^G(\omega)$ has dimension $[W(\omega): W''(\omega)]$.

PROOF. Harish-Chandra's commuting algebra theorem implies that, for any $P \in \mathcal{P}(A)$, the mapping $s \mapsto {}^{0}c_{P|P}(s:\omega)$, a homomorphism from $W(\omega)$ to the group of unitary automorphisms of the algebra $L(\omega, P)$, may be regarded as a mapping onto a set of generators for the commuting algebra of $\operatorname{Ind}_{P}^{G}(\delta_{P}^{1/2}\sigma)$ ($\sigma \in \omega$). We prove the theorem in two steps: (1) ${}^{0}c_{P|P}(s:\omega)$ is the identity on $L(\omega, P)$ when $s \in W''(\omega)$; (2) the dimension of the commuting algebra is at least $[W(\omega): W''(\omega)]$.

For (1) it is enough to show that ${}^0C_{P|P}(s:\omega) = I$ whenever s is the reflection s_{α} associated to an ω -special root α . Given any such α , we may choose $P_1 \in \mathcal{P}(A)$ such that $\alpha \in \Sigma^0(P_1, A)$. It is enough to show that

$${}^{0}C_{P_{1}|P_{1}}(s:\omega)=I,$$

since

$${}^{0}c_{P|P}(s:\omega) = {}^{0}c_{P|P_{1}}(1:\omega) {}^{0}c_{P_{1}|P_{1}}(s:\omega) {}^{0}c_{P_{1}|P}(1:\omega) \text{ and}$$

$$I = {}^{0}c_{P|P}(1:\omega) = {}^{0}c_{P|P_{1}}(1:\omega) {}^{0}c_{P_{1}|P}(1:\omega);$$

both relations follow from the general transformation formulas for the ${}^{0}c$ -functions [2, §§11–12], [4, §5.2.4].

Thus, without loss of generality, assume that $\alpha \in \Sigma^0(P, A)$. Let A_{α} and M_{α} be as before. Then $P \cap M_{\alpha} = {}^*P_{\alpha}$ is a maximal parabolic subgroup of M_{α} . Since $\mu_{\alpha}(\omega: 0) = 0$, the representation $\operatorname{Ind}_{{}^*P_{\alpha}}^{M_{\alpha}}(\delta^{1/2}_{{}^*P_{\alpha}}\sigma)$ is irreducible, so ${}^0C_{{}^*P_{\alpha}|{}^*P_{\alpha}}(s_{\alpha}: \omega) = I_{L(\omega, {}^*P_{\alpha})}$. On the other hand, by [4, Theorem 5.3.5.3(4)],

$${}^{0}c_{P|P}(s_{\alpha}:\omega) = {}^{0}c_{P|P}(s_{\alpha}:\omega)|_{L(\omega,P)}$$

so ${}^{0}c_{P|P}(s:\omega) = I_{L(\omega, P)}$ for all $s \in W''(\omega)$, as required.

To prove (2) we shall argue as follows. Let $\pi_{P,\omega} = \operatorname{Ind}_{P}^{G}(\delta_{P}^{1/2}\sigma)$ act in a vector space \mathfrak{R} . Consider the tempered Jacquet module $\overline{\mathfrak{R}} = {}_{w}(\mathfrak{R}/\mathfrak{R}(\overline{P}))$ associated to $\pi_{P,\omega}$, with $\overline{\pi}_{P,\omega}$ the representation of M on $\overline{\mathfrak{R}}$. It is known [4, Theorem 5.4.1.1] that $\overline{\mathfrak{R}}$ has a composition series of length [W(G/A)], whose composition factors, counted with multiplicities, are $\{\delta_{P}^{1/2}\omega^{s}\}_{s\in W(G/A)}$. Furthermore, it follows from the fact that discrete series are projectives in the

category of tempered modules (with a fixed central exponent) that $\overline{\mathbb{H}}$ is a direct sum of isotypic submodules. Let $\overline{\mathbb{H}}(\omega)$ be the submodule all of whose components are of class $\delta_F^{1/2}\omega$. The composition series for $\overline{\mathbb{H}}(\omega)$ has length $[W(\omega)]$. The Frobenius reciprocity theorem [4, Theorem 1.7.10] implies that $\delta_F^{1/2}\omega$ occurs as a quotient in $\overline{\mathbb{H}}(\omega)$ a number of times equal to the dimension of the commuting algebra of $C_M^G(\omega)$. Thus, to prove (2), it is sufficient to show that $\overline{\mathbb{H}}(\omega)$ contains $\delta_F^{1/2}\omega$ as a quotient at least $[W(\omega): W''(\omega)]$ times. For this, it is obviously sufficient to show that the multiplicity of the central character $\delta_F^{1/2}\chi_{\omega}$ in $\overline{\mathbb{H}}(\omega)$ is no greater than $[W''(\omega)]$.

We shall prove, instead, an equivalent fact involving the Eisenstein integral and the weak constant term. Let $\psi \in L(\omega, P)$ and consider the Eisenstein integral $E(P:\psi:\nu)$. The weak constant term $_{\nu}E_{P}(P:\psi:\nu)$ is holomorphic in a neighborhood U of α^{*} [4, Corollary 5.3.3.5]. For $\nu \in U$ in general position we may write

$$_{w}E_{P}(P:\psi:\nu)=\sum_{s\in W(G/A)}c_{P|P}(s:\omega:\nu)\psi\chi_{s\nu}.$$

For any $s \in W(G/A)$, the function

$$c_{P|P}(s:\omega:\nu) = sc_{P^{s-1}|P}(1:\omega:\nu) = s \prod_{\alpha\in\Sigma,(P,A)} c_{\alpha}^{\pm}(1:\omega:\nu),$$

where each function $c_{\alpha}^{+}(1:\omega:\nu)$ or $c_{\alpha}^{-}(1:\omega:\nu)$ is a c-function associated to a pair (M_{α}, M) in which M_{α} is a reductive subgroup of G containing $(P \cap M_{\alpha}, A)$ as a maximal p-pair $[4, \S 5.4.3]$. Each function c_{α}^{\pm} is essentially a meromorphic function of a single complex variable, holomorphic for all $\nu \in U$, unless α is an ω -special root; if α is an ω -special root, then the hyperplane H_{α} passing through $\nu = 0$ and orthogonal to α is singular for c_{α}^{\pm} . This implies that the function $c_{P|P}(s:\omega:\nu)$ is holomorphic on $U - \bigcup_{\alpha \in \Sigma''} H_{\alpha}$.

We claim that, to prove (2), it is sufficient to show that the function

$$\Phi(s_0, \nu) = \sum_{s \in W''(\omega)} c_{P|P}(ss_0 : \omega : \nu) \psi \chi_{ss_0\nu}$$

is holomorphic at $\nu=0$ for any $s_0\in W(\omega)$. If this is so, then one can show exactly as in [4, §§5.3.2-3] (and we shall not give the details here) that $\prod_{t\in W''(\omega)}(\chi_{ts_0\nu}(a)-\rho(a))\Phi(s_0,\nu)$ is identically zero near $\nu=0$ and, as a consequence, that the multiplicity of the exponent χ_{ω} is no greater than $[W''(\omega)]$. However, by [4, Corollary 3.2.5(3)], the multiplicity of the exponent χ_{ω} related to the constant term is the same as the multiplicity of $\delta_P^{1/2}\chi_{\omega}$ in the Jacquet space. Thus, it follows easily that, since $\delta_P^{1/2}\omega$ occurs $[W(\omega)]$ times in the composition series of $\overline{\mathcal{H}}(\omega)$, $\delta_P^{1/2}\omega$ actually occurs as a quotient at least $[W(\omega): W''(\omega)]$ times, as required.

Let us show that $\Phi(s_0, \nu)$ is holomorphic at $\nu = 0$. It is enough to check this for any $\psi \in L(\omega, P)$. As is well known, we may (and do) choose ψ such that $E(P: \psi: \nu) = E(P: \psi: s\nu)$ for all $s \in W(\omega)$ and $\nu \in \alpha^*$. Observe that, in this

case, $c_{P|P}(s:\omega:t\nu)\psi\chi_{st\nu}=c_{P|P}(st:\omega:\nu)\psi\chi_{st\nu}$ for all $s,t\in W(\omega)$ and $\nu\in \alpha^*$, so $\Phi(1,s_0\nu)=\Phi(s_0,\nu)$. Thus, it is sufficient to check that $\Phi(1,\nu)$ is holomorphic at $\nu=0$.

We shall need the fact that the weak constant term takes its image in the direct sum $\bigoplus_{s \in W/W(\omega_s)} \mathcal{C}(M, \tau_M)_{\omega_s}$. This is proved in the supercuspidal case in [4, Corollary 5.4.4.6]; the proof in the present case is exactly the same and depends upon the fact, used above, that discrete series are projectives in the category of tempered admissible modules. As a consequence, any term

$$E_{P,\omega_{r_0}}(P:\psi:\nu) = \sum_{s \in W(\omega_{r_0})} E_{P,s}(P:\psi:\nu)$$

is holomorphic in a neighborhood of $\nu = \nu_0$.

We have already observed that the singularities of $\Phi(1, \nu)$, if there are any, lie in $\bigcup H_{\alpha}$ ($\alpha \in \Sigma''$). It follows easily from the Weierstrass Preparation Theorem that a nonempty zero set of a holomorphic function defined in an open set U of a complex space is a union of hypersurfaces in U. Therefore, it is sufficient, in order to show that $\Phi(1, \nu)$ is holomorphic at $\nu = 0$, to show that the singularities lie in a subset of codimension at least two.

Let $\alpha \in \Sigma''$ and $\nu_0 \in H_{\alpha} - \bigcup_{\alpha' \neq \alpha} H_{\alpha'}$. We shall show that $\Phi(1, \nu)$ is holomorphic at $\nu = \nu_0$. To see this, note first that $W(\omega_{\nu_0}) \cap W''(\omega_0) = \{1, s_{\alpha}\}$, which follows from well-known properties of Weyl groups. We may choose representatives $s_1, \ldots, s_r \in W''(\omega) \setminus W(\omega)$ such that s_i and $s_{\alpha}s_i$ fix H_{α} for all $i = 1, \ldots, r$. There is a neighborhood V of ν_0 on which

$$E_{P,\omega_{r_0}}(P:\psi:\nu) = \sum_{i=1}^{r} \left(c_{P|P}(s_i:\omega:\nu) \psi \chi_{s_i\nu} + c_{P|P}(s_{\alpha}s_i:\omega:\nu) \psi \chi_{s_{\alpha}s_i\nu} \right)$$

is holomorphic. For all $v \in V \cap H_{\alpha}$ and $i = 1, \ldots, r$.

$$c_{P|P}(s_i:\omega:\nu)\psi\chi_{s_i\nu} + c_{P|P}(s_\alpha s_i:\omega:\nu)\psi\chi_{s_\alpha s_i\nu}$$

= $c_{P|P}(1:\omega:\nu)\psi\chi_{\nu} + c_{P|P}(s_\alpha:\omega:\nu)\psi\chi_{s_\nu}$,

from which it follows that $c_{P|P}(1:\omega:\nu)\psi\chi_{\nu}+c_{P|P}(s_{\alpha}:\omega:\nu)\psi\chi_{s_{\alpha}\nu}$ and, hence, $\Phi(1,\nu)$ is holomorphic near $\nu=\nu_0$. We conclude that $\Phi(1,\nu)$ is, in fact, holomorphic at $\nu=0$. This proves the theorem.

REFERENCES

- 1. N. Bourbaki, Éléments de mathématique, Fasc. XXXIV. Groupes et algèbres de Lie, Chapters IV, V, VI, Actualités Sci. Indust., no. 1337, Hermann, Paris, 1968.
- 2. Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1974, pp. 167-192.
- 3. A. W. Knapp and E. M. Stein, Singular integrals and the principal series. IV, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 2459-2461.
- 4. A. J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, based on lectures by Harish-Chandra (to appear).

DEPARTMENT OF MATHEMATICS, CLEVELAND STATE UNIVERSITY, CLEVELAND, OHIO 44115