SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

GROUP RINGS WHOSE UNITS FORM A NILPOTENT OR FC GROUP

M. M. PARMENTER 1 AND C. POLCINO MILIES 2

Let G be a finite group. We denote by RG its group ring over a ring with unity R and by U(RG) its unit group. The structure of U(RG) has been studied by many authors (for an excellent survey, see [1]). In this note, we study necessary and sufficient conditions on G for U(RG) to be a nilpotent or an FC group when R is either \mathbb{Z} , the ring of rational integers, or a commutative ring containing $\mathbb{Z}_{(p)}$, a localization of \mathbb{Z} at a prime ideal (p).

The case $R = \mathbb{Z}$ is also covered in [8] and either [5] or [7]; however, our proof is much simpler than the original ones, mainly because of the following result, whose proof is implicit in [4, p. 129].

LEMMA. Let G be a finite group such that $TU(\mathbf{Z}G)$, the set of torsion elements in $U(\mathbf{Z}G)$, forms a subgroup. Then $TU(\mathbf{Z}G) = \pm G$, i.e. every unit of finite order is trivial.

THEOREM 1. Let G be a finite group. Then the following are equivalent:

- (i) $U(\mathbf{Z}G)$ is nilpotent.
- (ii) $U(\mathbf{Z}G)$ is an FC group.
- (iii) $TU(\mathbf{Z}G)$ is a subgroup.
- (iv) $TU(\mathbf{Z}G) = \pm G$.
- (v) G is either abelian or a Hamiltonian 2-group.

PROOF. It is well known that both (i) and (ii) imply (iii); the lemma above shows that (iii) implies (iv) and the equivalence of (iv) and (v) is also well known (see [3]).

Obviously, (v) implies both (i) and (ii) since for Hamiltonian 2-groups, we have that $U(\mathbf{Z}G) = \pm G$ (see [2, Theorem 11]).

Received by the editors March 14, 1977 and, in revised form, June 14, 1977.

AMS (MOS) subject classifications (1970). Primary 16A26; Secondary 20D15.

Key words and phrases. Group rings, unit groups, nilpotent, FC group.

¹This work was supported in part by National Research Council of Canada grant A-8775.

²The second author was on leave at Memorial University of Newfoundland on an exchange program by NRC (Canada) and CNPq (Brazil) while this work was done.

THEOREM 2. Let G be a finite group and R a commutative ring containing $\mathbb{Z}_{(p)}$. Then the following are equivalent.

- (i) U(RG) is nilpotent.
- (ii) U(RG) is an FC group.
- (iii) G is an abelian group.

PROOF. Let J_{p^n} be the ring of integers modulo p^n . The natural epimorphism $\mathbf{Z}_{(p)} \to J_{p^n}$ induces an epimorphism $\mathbf{Z}_{(p)}G \to J_{p^n}G$ whose kernel lies in the Jacobson radical. Thus, it yields by restriction an epimorphism $U(\mathbf{Z}_{(p)}G) \to U(J_{p^n}G)$. Hence, the equivalence of (i) and (iii) follows from [5, Lemma 4].

Since $U(\mathbf{Z}G) \subset U(RG)$, to prove the equivalence of (ii) and (iii), it will suffice to show that if G is Hamiltonian, then U(RG) is not an FC group.

A Hamiltonian group always contains a subgroup of the form

$$Q = \langle a, b | a^4 = 1, a^2 = b^2, bab^3 = a^3 \rangle,$$

i.e. isomorphic to the quaternion group of order 8. Hence, it will be enough to show that $U(\mathbf{Z}_{(p)}Q)$ is not an FC group. Since the first commutator of an FC group is torsion (see [6, 15.1.7]), our statement will be proved if we exhibit a commutator which is not of finite order.

Let $x, y \in Z$, $y \neq 0$, be such that $p \nmid x$ and $p \mid y$. Then $\alpha = x + ya$ is a unit in $\mathbf{Z}_{(p)}Q$ and

$$[b, \alpha] = b\alpha b^{-1}\alpha^{-1} = (x^2 + y^2)^{-1}(x^2 - xya + y^2a^2 + xya^3).$$

If $\Phi: \mathbb{Z}_{(p)}\langle a \rangle \to \mathbb{Z}_{(p)}[i]$ is the $Z_{(p)}$ -linear function such that $\Phi(a') = i'$, $0 \le r \le 3$, then Φ is a ring homomorphism and $\Phi[b, \alpha] = X - Yi$ where

$$X = (x^2 + y^2)^{-1}(x^2 - y^2)$$
 and $Y = (x^2 + y^2)^{-1}2xy$.

Since X and Y are both nonzero rational numbers, $\Phi[b, \alpha]$ is not a root of unity, hence $[b, \alpha]$ is not torsion.

REFERENCES

- 1. R. Keith Dennis, The structure of the unit group of group rings, Ring Theory II, Lecture Notes in Pure and Appl. Math., No. 26, Dekker, New York, 1977, pp. 103-130.
 - 2. G. Higman, The units of group rings, Proc. London Math. Soc. 2 (1940), 231-246.
- 3. I. Hughes and C. H. Wei, Group rings with only trivial units of finite order, Canad. J. Math. 24 (1972), 1137-1138.
- 4. G. Losey, A remark on the units of finite order in the group ring of a finite group, Canad. Math. Bull. 17 (1974), 129-130.
- 5. C. Polcino Milies, Integral group rings with nilpotent unit groups, Canad. J. Math. 28 (1976), 954-960.
 - 6. W. R. Scott, Group theory, Prentice Hall, Englewood Cliffs, N. J., 1964.
- 7. S. K. Sehgal and H. J. Zassenhaus, Integral group rings with nilpotent unit groups, Comm. Algebra 5 (1977), 101-111.
 - 8. ____, Group rings whose units form an FC group (to appear).

DEPARTMENT-OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, St. JOHN'S, NEWFOUNDLAND, CANADA A1C 5S7

Instituto de Matemática e Estatistica, Universidade de São Paulo, São Paulo, Brasil