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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

GROUP RINGS WHOSE UNITS FORM A NILPOTENT

OR FC GROUP

M. M. PARMENTER1 AND C. POLCINO MILIES2

Let G be a finite group. We denote by RG its group ring over a ring with

unity R and by UiRG) its unit group. The structure of UiRG) has been

studied by many authors (for an excellent survey, see [1]). In this note, we

study necessary and sufficient conditions on G for UiRG) to be a nilpotent

or an FC group when R is either Z, the ring of rational integers, or a

commutative ring containing Z(p), a localization of Z at a prime ideal (p).

The case R = Z is also covered in [8] and either [5] or [7]; however, our

proof is much simpler than the original ones, mainly because of the following

result, whose proof is implicit in [4, p. 129].

Lemma. Let G be a finite group such that TU(LG), the set of torsion elements

in l/(ZG), forms a subgroup. Then TU(LG) = ±G, i.e. every unit of finite

order is trivial.

Theorem 1. Let G be a finite group. Then the following are equivalent:

(i) U(IG) is nilpotent.

(ii) U(LG) is an FC group.

(iii) Ft/(ZG) is a subgroup.

(iv)Fi/(ZG) = ±G.

(v) G is either abelian or a Hamiltonian 2-group.

Proof. It is well known that both (i) and (ii) imply (iii); the lemma above

shows that (iii) implies (iv) and the equivalence of (iv) and (v) is also well

known (see [3]).

Obviously, (v) implies both (i) and (ii) since for Hamiltonian 2-groups, we

have that f/(ZG) = ± G (see [2, Theorem 11]).
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Theorem 2. Let G be a finite group and R a commutative ring containing

1(py Then the following are equivalent,

if) UiRG) is nilpotent.

(ii) UiRG) is an FC group.

(iii) G is an abelian group.

Proof. Let J. be the ring of integers modulop". The natural epimorphism

Z,p)-*J . induces an epimorphism Z{p)G->Jp«G whose kernel lies in the

Jacobson radical. Thus, it yields by restriction an epimorphism [/(Z(y))G) ->

U(Jp,G). Hence, the equivalence of (i) and (iii) follows from [5, Lemma 4].

Since U(ZG) c UiRG), to prove the equivalence of (ii) and (iii), it will

suffice to show that if G is Hamiltonian, then UiRG) is not an FC group.

A Hamiltonian group always contains a subgroup of the form

Q = (a, b\a* = 1, a2 = b2, bob3 = a3),

i.e. isomorphic to the quaternion group of order 8. Hence, it will be enough to

show that U(Z(p)Q) is not an FC group. Since the first commutator of an FC

group is torsion (see [6, 15.1.7]), our statement will be proved if we exhibit a

commutator which is not of finite order.

Let x, v G Z, y ¥= 0, be such that p \ x and p\y. Then a = x + ya is a

unit in Z(p)Q and

[b, a] = bab~xa~x = (x2 + y2)~\x2 - xya + y2a2 + xya3).

If $: Z(i,)<a>^Z(/l)[/] is the Z(/7)-linear function such that $(ar) = ir,

0 < r < 3, then 4> is a ring homomorphism and <&[b, a] = X — Yi where

X = ix2+y2y\x2- v2)    and    Y = (x2 + v2)_12xy.

Since X and Y are both nonzero rational numbers, 4>[/3, a] is not a root of

unity, hence [b, a] is not torsion.
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