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A SUBNORMAL SEMIGROUP WITHOUT

NORMAL EXTENSION1

ARTHUR LUBIN

Abstract. Theorem 1. There exists a subnormal semigroup with no commut-

ing normal extension. Theorem 2. There exist two commuting quasinormal

operators without commuting normal extension.

1. A bounded linear operator T on a Hubert space % is called subnormal if

there exists a normal operator N acting on a larger Hubert space % d %

such that % is invariant under N and N\%= T. T. Ito [3] showed that

commuting subnormals Tx, . . . ,Tn on % have a commuting normal

extension, i.e. there exist commuting normals Nx, .. ., Nn each defined on

% D % with N¡\% = T¡, if and only if an analog of the Halmos-Bram

positivity condition is satisfied. Ito also showed that every continuous one-

parameter semigroup of commuting subnormals on % can be extended to a

continuous one-parameter semigroup of commuting normals on some % D

%. Recent examples by M. B. Abrahamse [1] and A. Lubin [4] show that

there exist commuting subnormals with no commuting normal extensions. In

this note we give an example of a two-parameter subnormal semigroup

without commuting normal extension; our example also provides two

commuting quasinormal operators without commuting normal extension. Our

example is presented in a simplified form suggested by Professor Chandler

Davis.

2. Let % be the Hubert space having orthonormal basis {c0, en, /„: n = 1,

2,. . . }, and define Ux, U2 on % by:

Uiie«)- en+x,

^i (¿o) = ex,

£/,(/„) = o,

U2{eH)-0,

U2(c0)=fx,

u2{fn)-fn+l,
i.e.
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Note that each U¡ is the direct sum of a unilateral shift and 0, and that

UxU2 = U2UX = 0. Í7, and U2 are clearly subnormal, and are even

quasinormal. (Recall that an operator A is quasinormal if A(A*A) =

(A*A)A and every quasi-normal operator is subnormal [2, p. 101].) Since the

powers of a subnormal are subnormal, § = {U{U2 : j, k = 0, 1, 2, . . . } is a

commutative subnormal semigroup.

If there exists a commutative normal semigroup [N{N2} on % extending

S, then (Ux + U2) = (A, + N2)\% is subnormal. An operator A is called

hyponormal if (A* A - A A*) > 0, and all subnormal operators are

hyponormal [2, p. 103]. A simple computation shows that for X = Ux + U2,

Q = X*X - XX*

O

-1

O

/

Thus, (Q(ex +/,), (t?, +/,)) = -2 < 0 so Q is not even hyponormal and

therefore S cannot have a normal extension. Hence, we have

Theorem 1. There exists a commuting subnormal semigroup with no commut-

ing normal extension.

Theorem 2. There exist two commuting quasinormal operators without a

commuting normal extension.
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