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DIVISIBILITY PROPERTIES OF THE ¢-TANGENT NUMBERS
GEORGE E. ANDREWS' AND IRA GESSEL

ABSTRACT. The g-tangent number T,,,,(q) is shown to be divisible by
(1 + gX1+ g% - (1+ g"). Related divisibility questions are discussed.

1. Introduction. The tangent numbers T, , are integers defined by

& Typix”
(11) 2 (2n—+1)!—tanx.

n=0

Numerous properties of the tangent number are known; in particular [2, p.
259]:

1.2) Tons1 = 4" |Gopio| / (n + 1),

where G, is an integer called the Genocchi number. Thus it is clear from (1.2)
that T, , , is always divisible by a high power of 2.
A natural g-analog of the tangent numbers is given by

§ Tyne1(g)x"  sing x
n=0 (q)2n+l COSq x
0 (_ 1)"x2n+l 0 (_ 1)"x2n

=2 >

n=0  (Daps, nmo (@

where (4), = (4; 9), = (1 — A)1 — 4Aq) - - - (1 — Ag"™"); R. P. Stanley [4]
has given a combinatorial interpretation of the polynomials 7T,,, ,(g) which
shows that all the coefficients are nonnegative.

One of us [3] has shown that T,,,,(q) is divisible by the cyclotomic
polynomials ¢5(q), $4(q), - - ., ¢,,(g) through a study of properties of
Gaussian polynomials in cyclotomic fields. Our object here is to derive the
following result on g-tangent numbers which is analogous to the fact that
T,, ., is divisible by a high power of 2:

(1.3)

THEOREM 1. The polynomial T,, , \(q) is divisible by (1 + q)(1 + ¢*) - - - (1
+ q").
We conclude with a few comments about other divisibility properties of

T,,,(q) that are derivable using our method. The assertion in Theorem 1
was a conjecture made by M. P. Schiitzenberger at the combinatorics
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conference at Oberwohlfach in February, 1975.
2. Proof of Theorem 1. To prove this result we require two lemmas.

LEMMA 1. For nonnegative integers N and j, the expression
1) [2N+1 (I+g(+g) --(1+g)
2j 1+ g") (A +g¥ ) (14 gV
is a polynomial in q, where [%,] is the Gaussian polynomial

2.2) - T

PrOOF. Obviously the expression in question is a rational function and the
roots of the denominator are roots of unity. To prove Lemma 1 we need only
show that each zero of the denominator appears with at least as large
multiplicity in the numerator as in the denominator.

Now if p is a primitive kth root of unity then p is a simple root of 1 — g™ if
and only if k|M. Furthermore we know a priori (due to the recurrences for
Gaussian polynomials) that [2"';'] is a polynomial. Consequently for each
integer / with 1 < / < 2j, we see that / must divide at least [2j//] of the
numbers 2N + 1,2N,2N —1,...,2N — 2j + 2 (otherwise this Gaussian
polynomial would not be a polynomial). Now

(2.3)

[2N+l (1+q)(1+4) - (1+¢)
U] (1+g"M)(1+g" ") (1+ g8+
_ (l _ q2N+l)(l _ q”)(l _ q2N—l)(l _ qN—l) L. (l _ q2N—2j+3)(l _ qN—j+l)
A-¢)1-¢*")1-¢)1-¢¥?) - (1-g)1-9g)

and one sees that this is the same as the expression for [?V'] except that each
even exponent in numerator and denominator has been divided by 2. Thus
the divisibility properties previously described are preserved since the only
change is that j numerator exponents and j denominator exponents have been
divided by 2 which of course does not affect whether a denominator exponent
divides a numerator exponent (i.e. if / is odd and /|2M then /| M, if / is even
and /|2M then £|M). Thus the denominator of

[0 (+a(+a) - (1+¢)
YL+ g" ) (gt

has no zeros that are not cancelled by those of the numerator. This proves
Lemma 1. [J

LEMMA 2. The g-tangent numbers satisfy
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N .
Tonsr (9) + 2 (_4)2j—| [2N2;- ! ](_])1T2N+l—2j (9)
Jj=1

2.4
=(-)" (9w
where (@), = (a; 9), = (1 —a)1 —aq)- - - (1 — ag"™"), (a)o = 1.
PrOOF. We have

© T. . (q)x2n+l © ( l)" 2n+l/°° ( 1)" 2n
(2.5) e N - A )

ngo (q)Zn +1 ngo (q)zn +1 n=0 (q)Zn
Now (herei =V —1)

@ (DR g e (12D

(2 6) n=0 (q)2n+l - n=0 (q),, 2
= -21-, ((,.xl) - (—:x)w) (by [1, p. 19, equation (2.2.5)]);
& OO g e (5CD)
(2 7) n=0 (q)2n n=0 (q)n 2
. _1 1 1
T2 ( (ix),, + (—ix), )
Therefore

& L@ _1( 1 1 1(_1 1
,,go (q)2n+l 2’ ( (ix)oo (_ix)oo )/2 ( (ix)co * (—ix)oo )
1 () — (), 1 (C)/ (%) —

T Ci ), 0 (Ci /), + 1

Clearing the denominator on the right and utilizing the g-binomial series

s W _ (),

(9), (2)
[1, p. 17, equation (2.2.1)], we find that
2 (D) & @ | & (D,
(‘ v 2 ), )2 v N

Let us now compare the real parts of the coefficient of x*¥*! in this last
identity:
2Ton+1(9) + 2 (- 1)2, (- l)jT2N+1—2j (@) = (=Dyuy (= l)N’
J=1

and if we divide each side of this identity by 2 we obtain the result stated in
Lemma 2. []

ey
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THEOREM 1. The polynomial (1 + q)(1 + ¢*) - - - (1 + q") divides the
polynomial T,y . \(q).
ProOF. The result is immediate for N = 0, 1 since 7, = 1 and T; = g(1 +

q). Let us now assume the result true up to but not including N.
Now

(“1)2/‘"[2]\,2;1]=(_q)j(_qj+l)j_'[2N2;l]

=g 4 g (e,
(I+(1+4) - (1+¢) 2N + 1
(1+g%)(1+ g% ) (1+ gV [ Y ]
Hence by Lemma 1, (1 + ¢™)(1 + gV~ ") - - - (1 — g¥~/*1) is factor of the
polynomial (—g),_,[*"5;']. By the induction hypothesis (1 + g)1 +

g - - (1+ q"7)is a factor of Tyn+1-2(q). Hence for 1 < j < N, we see
that (— q) is a factor of

j 2N +1
a2 | Toveroa )
and since (— q) is obviously a factor of (—¢),5 we deduce from Lemma 2

that (—q)y is a factor of T,y,,(¢) as well. Thus Theorem 1 follows by
induction.

3. Conclusion. First we note that the result mentioned in the Introduction
about the divisibility of the T),,,(q) by the cyclotomic polynomials ¢,(q),
94(q), - . . , $2,(q) now follows from Theorem 1 since ¢,,(g) divides (1 + ¢g").

We also note that the divisibility of T, ,(¢g) by specific factors of the form
1 + ¢’ can be handled again by Lemma 2. For example:

THEOREM 2. The polynomial (1 + q)" is a factor of the q-tangent number
T2n+l(q)'

PROOF. The result is obvious for n = 0, 1 since Ty(¢) = 1 and T;(q) = ¢(1
+ g). Assume the theorem true up to but not including n. Now since
1+ @M =1+l —qg+¢*>— - + ¢*M), we see that (1 + g is a
factor of (—g),_;. By the induction hypothesis (1 + ¢)¥/ is a factor of
Tyn +1-2(q). Hence (1 + ¢)" is a factor of

0y Ny | T )

and since (1 + ¢)" is also a factor of (— gq),y, we deduce from Lemma 2 that
(1 + ¢)" is a factor of T,y ,(9).
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