DIVISIBILITY PROPERTIES OF THE q-TANGENT NUMBERS

GEORGE E. ANDREWS¹ AND IRA GESSEL

ABSTRACT. The q-tangent number $T_{2n+1}(q)$ is shown to be divisible by $(1+q)(1+q^2)\cdots(1+q^n)$. Related divisibility questions are discussed.

1. Introduction. The tangent numbers T_{2n+1} are integers defined by

(1.1)
$$\sum_{n=0}^{\infty} \frac{T_{2n+1}x^n}{(2n+1)!} = \tan x.$$

Numerous properties of the tangent number are known; in particular [2, p. 259]:

$$(1.2) T_{2n+1} = 4^{n+1} |G_{2n+2}| / (n+1),$$

where G_n is an integer called the Genocchi number. Thus it is clear from (1.2) that T_{2n+1} is always divisible by a high power of 2.

A natural q-analog of the tangent numbers is given by

(1.3)
$$\sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^n}{(q)_{2n+1}} = \frac{\sin_q x}{\cos_q x}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(q)_{2n+1}} / \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q)_{2n}},$$

where $(A)_n = (A; q)_n = (1 - A)(1 - Aq) \cdot \cdot \cdot (1 - Aq^{n-1})$; R. P. Stanley [4] has given a combinatorial interpretation of the polynomials $T_{2n+1}(q)$ which shows that all the coefficients are nonnegative.

One of us [3] has shown that $T_{2n+1}(q)$ is divisible by the cyclotomic polynomials $\phi_2(q), \phi_4(q), \ldots, \phi_{2n}(q)$ through a study of properties of Gaussian polynomials in cyclotomic fields. Our object here is to derive the following result on q-tangent numbers which is analogous to the fact that T_{2n+1} is divisible by a high power of 2:

THEOREM 1. The polynomial $T_{2n+1}(q)$ is divisible by $(1+q)(1+q^2)\cdots(1+q^n)$.

We conclude with a few comments about other divisibility properties of $T_{2n+1}(q)$ that are derivable using our method. The assertion in Theorem 1 was a conjecture made by M. P. Schützenberger at the combinatorics

Received by the editors June 9, 1977.

AMS (MOS) subject classifications (1970). Primary 05A15, 05A19; Secondary 33A30.

¹Partially supported by the National Science Foundation Grant MSP 74-07282.

conference at Oberwohlfach in February, 1975.

2. Proof of Theorem 1. To prove this result we require two lemmas.

LEMMA 1. For nonnegative integers N and j, the expression

(2.1)
$$\left[\begin{array}{c} 2N+1 \\ 2j \end{array} \right] \frac{(1+q)(1+q^2)\cdots(1+q^j)}{(1+q^N)(1+q^{N-1})\cdots(1+q^{N-j+1})}$$

is a polynomial in q, where $\binom{N}{M}$ is the Gaussian polynomial

PROOF. Obviously the expression in question is a rational function and the roots of the denominator are roots of unity. To prove Lemma 1 we need only show that each zero of the denominator appears with at least as large multiplicity in the numerator as in the denominator.

Now if ρ is a primitive kth root of unity then ρ is a *simple* root of $1-q^M$ if and only if k|M. Furthermore we know a priori (due to the recurrences for Gaussian polynomials) that $\binom{2N+1}{2j}$ is a polynomial. Consequently for each integer l with $1 \le l \le 2j$, we see that l must divide at least $\lfloor 2j/l \rfloor$ of the numbers $2N+1, 2N, 2N-1, \ldots, 2N-2j+2$ (otherwise this Gaussian polynomial would not be a polynomial). Now

(2.3)

$$\begin{bmatrix} 2N+1 \\ 2j \end{bmatrix} \frac{(1+q)(1+q^2)\cdots(1+q^j)}{(1+q^N)(1+q^{N-1})\cdots(1+q^{N-j+1})}$$

$$= \frac{(1-q^{2N+1})(1-q^N)(1-q^{2N-1})(1-q^{N-1})\cdots(1-q^{2N-2j+3})(1-q^{N-j+1})}{(1-q^j)(1-q^{2j-1})(1-q^{j-1})(1-q^{2j-3})\cdots(1-q)(1-q)}$$

and one sees that this is the same as the expression for $[{}^{2N+1}_{2j}]$ except that each even exponent in numerator and denominator has been divided by 2. Thus the divisibility properties previously described are preserved since the only change is that j numerator exponents and j denominator exponents have been divided by 2 which of course does not affect whether a denominator exponent divides a numerator exponent (i.e. if l is odd and l|2M then l|M, if l is even and l|2M then $\frac{1}{2}|M$). Thus the denominator of

$$\begin{bmatrix} 2N+1 \\ 2j \end{bmatrix} \frac{(1+q)(1+q^2)\cdots(1+q^j)}{(1+q^N)(1+q^{N-1})\cdots(1+q^{N-j+1})}$$

has no zeros that are not cancelled by those of the numerator. This proves Lemma 1. \square

LEMMA 2. The q-tangent numbers satisfy

$$T_{2N+1}(q) + \sum_{j=1}^{N} (-q)_{2j-1} \begin{bmatrix} 2N+1 \\ 2j \end{bmatrix} (-1)^{j} T_{2N+1-2j}(q)$$

$$= (-1)^{N} (-q)_{2N};$$

where $(a)_n = (a; q)_n = (1 - a)(1 - aq) \cdot \cdot \cdot (1 - aq^{n-1}), (a)_0 = 1.$

PROOF. We have

(2.5)
$$\sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(q)_{2n+1}} / \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q)_{2n}}.$$

Now (here $i = \sqrt{-1}$)

(2.6)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(q)_{2n+1}} = \sum_{n=0}^{\infty} \frac{i^{n-1} x^n}{(q)_n} \frac{(1-(-1)^n)}{2}$$

$$= \frac{1}{2i} \left(\frac{1}{(ix)_{\infty}} - \frac{1}{(-ix)_{\infty}} \right) \text{ (by [1, p. 19, equation (2.2.5)])};$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(q)_{2n}} = \sum_{n=0}^{\infty} \frac{i^n x^n}{(q)_n} \frac{(1+(-1)^n)}{2}$$

$$= \frac{1}{2} \left(\frac{1}{(ix)} + \frac{1}{(-ix)} \right).$$

Therefore

$$\sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \frac{1}{2i} \left(\frac{1}{(ix)_{\infty}} - \frac{1}{(-ix)_{\infty}} \right) / \frac{1}{2} \left(\frac{1}{(ix)_{\infty}} + \frac{1}{(-ix)_{\infty}} \right)$$
$$= \frac{1}{i} \frac{(-ix)_{\infty} - (ix)_{\infty}}{(-ix)_{\infty} + (ix)_{\infty}} = \frac{1}{i} \frac{(-ix)_{\infty} / (ix)_{\infty} - 1}{(-ix)_{\infty} / (ix)_{\infty} + 1}.$$

Clearing the denominator on the right and utilizing the q-binomial series

$$\sum \frac{(A)_n z^n}{(q)_n} = \frac{(Az)_{\infty}}{(z)_{\infty}}$$

[1, p. 17, equation (2.2.1)], we find that

$$\left(1+\sum_{n=0}^{\infty} \frac{(-1)_n(ix)^n}{(q)_n}\right) \sum_{n=0}^{\infty} \frac{T_{2n+1}(q)x^{2n+1}}{(q)_{2n+1}} = \frac{1}{i} \sum_{n=1}^{\infty} \frac{(-1)_n(ix)^n}{(q)_n}.$$

Let us now compare the real parts of the coefficient of x^{2N+1} in this last identity:

$$2T_{2N+1}(q) + \sum_{j=1}^{N} (-1)_{2j} \begin{bmatrix} 2N+1 \\ 2j \end{bmatrix} (-1)^{j} T_{2N+1-2j}(q) = (-1)_{2N+1} (-1)^{N},$$

and if we divide each side of this identity by 2 we obtain the result stated in Lemma 2.

THEOREM 1. The polynomial $(1+q)(1+q^2)\cdots(1+q^N)$ divides the polynomial $T_{2N+1}(q)$.

PROOF. The result is immediate for N=0, 1 since $T_1=1$ and $T_3=q(1+q)$. Let us now assume the result true up to but not including N. Now

$$(-q)_{2j-1} \begin{bmatrix} 2N+1 \\ 2j \end{bmatrix} = (-q)_j (-q^{j+1})_{j-1} \begin{bmatrix} 2N+1 \\ 2j \end{bmatrix}$$

$$= (1+q^N)(1+q^{N-1}) \cdot \cdot \cdot (1+q^{N-j+1})(-q^{j+1})_{j-1}$$

$$\times \frac{(1+q)(1+q^2) \cdot \cdot \cdot (1+q^j)}{(1+q^N)(1+q^{N-1}) \cdot \cdot \cdot (1+q^{N-j+1})} \begin{bmatrix} 2N+1 \\ 2j \end{bmatrix}.$$

Hence by Lemma 1, $(1+q^N)(1+q^{N-1})\cdots(1-q^{N-j+1})$ is factor of the polynomial $(-q)_{2j-1}[^{2N+1}_{2j}]$. By the induction hypothesis $(1+q)(1+q^2)\cdots(1+q^{N-j})$ is a factor of $T_{2N+1-2j}(q)$. Hence for $1 \le j \le N$, we see that $(-q)_N$ is a factor of

$$(-1)^{j}(-q)_{2j-1}\begin{bmatrix}2N+1\\2j\end{bmatrix}T_{2N+1-2j}(q),$$

and since $(-q)_N$ is obviously a factor of $(-q)_{2N}$ we deduce from Lemma 2 that $(-q)_N$ is a factor of $T_{2N+1}(q)$ as well. Thus Theorem 1 follows by induction.

3. Conclusion. First we note that the result mentioned in the Introduction about the divisibility of the $T_{2n+1}(q)$ by the cyclotomic polynomials $\phi_2(q)$, $\phi_4(q), \ldots, \phi_{2n}(q)$ now follows from Theorem 1 since $\phi_{2n}(q)$ divides $(1+q^n)$. We also note that the divisibility of $T_{2n+1}(q)$ by specific factors of the form $1+q^j$ can be handled again by Lemma 2. For example:

THEOREM 2. The polynomial $(1+q)^n$ is a factor of the q-tangent number $T_{2n+1}(q)$.

PROOF. The result is obvious for n = 0, 1 since $T_1(q) = 1$ and $T_3(q) = q(1 + q)$. Assume the theorem true up to but not including n. Now since $1 + q^{2M+1} = (1 + q)(1 - q + q^2 - \cdots + q^{2M})$, we see that $(1 + q)^j$ is a factor of $(-q)_{2j-1}$. By the induction hypothesis $(1 + q)^{N-j}$ is a factor of $T_{2N+1-2j}(q)$. Hence $(1 + q)^N$ is a factor of

$$(-q)_{2j-1}$$
 $\begin{bmatrix} 2N+1\\2j \end{bmatrix}$ $(-1)^{j}T_{2N+1-2j}(q),$

and since $(1+q)^N$ is also a factor of $(-q)_{2N}$, we deduce from Lemma 2 that $(1+q)^N$ is a factor of $T_{2N+1}(q)$.

REFERENCES

- 1. G. E. Andrews, *The theory of partitions*, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley, Reading, Mass., 1976.
 - 2. L. Comtet, Advanced combinatorics, Riedel, Dordrecht, 1974.

- 3. I. Gessel, Exponential generating functions \pmod{p} and their q-analogs \pmod{p}
- 4. R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), 336-356.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802 (Current address of G. E. Andrews)

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Current address (Ira Gessel): IBM T. J. Watson Research Center, Yorktown Heights, New York 10598