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DIVISIBILITY PROPERTIES OF THE ^-TANGENT NUMBERS

GEORGE E. ANDREWS1 AND IRA GESSEL

Abstract. The ^-tangent number T2n+X(q) is shown to be divisible by

(1 + q)(l + 92) • ■ • (1 + q"). Related divisibility questions are discussed.

1. Introduction. The tangent numbers T2n+, are integers defined by

oo J" x"

(1-1) 2    ^2"l'n, = tanx.

Numerous properties of the tangent number are known; in particular [2, p.

259]:

0-2) 7-2„+, = 4"+1|G2„+2|/(h + 1),

where G„ is an integer called the Genocchi number. Thus it is clear from (1.2)

that T2n+, is always divisible by a high power of 2.

A natural ^-analog of the tangent numbers is given by

T2n+\(q)xn      sin,*

2
(1.3)

„-o      (i)2n+i cos,x

\"   2n + l „       ,      i\"   2n»    (-1)V+1     °°    (-l)V
= 2 —i-/2

= 0 (l)2n+1 n = 0 {l\n

where (A)„ = (A; q)n = (1 - A)(l - Aq) ■ ■ ■ (1 - y4?n_1); R. P. Stanley [4]

has given a combinatorial interpretation of the polynomials T2n+X(q) which

shows that all the coefficients are nonnegative.

One of us [3] has shown that T2„+X(q) is divisible by the cyclotomic

polynomials <b2(q), <t>4(q), ■ ■ ■, <t>2„(l) through a study of properties of

Gaussian polynomials in cyclotomic fields. Our object here is to derive the

following result on <¡r-tangent numbers which is analogous to the fact that

T2n+, is divisible by a high power of 2:

Theorem 1. The polynomial T2n+X(q) is divisible by (1 + q)(l + q2) ■ • ■ (1

+ q").

We conclude with a few comments about other divisibility properties of

T2n+X(q) that are derivable using our method. The assertion in Theorem 1

was a conjecture made by M. P.  Schiitzenberger at the combinatorics
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conference at Oberwohlfach in February, 1975.

2. Proof of Theorem 1. To prove this result we require two lemmas.

Lemma 1. For nonnegative integers N andj, the expression

(2.1)
(1 + ¿7)(1 + q2) • ■ - (1 + qJ)2N + 1

2/ (1 + qN)(\ + qN~X)-    -(l + qN-J+x)

is a polynomial in q, where [If] is the Gaussian polynomial

(2.2)
N
M {q)M{q)N-M '

Proof. Obviously the expression in question is a rational function and the

roots of the denominator are roots of unity. To prove Lemma 1 we need only

show that each zero of the denominator appears with at least as large

multiplicity in the numerator as in the denominator.

Now if p is a primitive kth root of unity then p is a simple root of 1 — ¿7M if

and only if k\M. Furthermore we know a priori (due to the recurrences for

Gaussian polynomials) that [2N2JX] is a polynomial. Consequently for each

integer / with 1 < / < 2/, we see that / must divide at least [2///] of the

numbers 2N + 1, 2N, 2N - 1,..., 2N - 2/ + 2 (otherwise this Gaussian

polynomial would not be a polynomial). Now

(2.3)

2N + 1 (\ + q)(\ + q2)--(\ + qJ)

(1 + qN)(\ +qN~X)- ■ ■ (l + qN~J+X)

(1 - q2N+,)(\ - q")(l - q2N~X)(l ~ qN~]) •••(!- q2N~2J+i)(\ - qN~J+])

(l-^)(l-^-')(l-¿/-')(l - qÏJ-') ••(!- q)(\ - q)

and one sees that this is the same as the expression for [2N2J '] except that each

even exponent in numerator and denominator has been divided by 2. Thus

the divisibility properties previously described are preserved since the only

change is that/ numerator exponents and/ denominator exponents have been

divided by 2 which of course does not affect whether a denominator exponent

divides a numerator exponent (i.e. if / is odd and l\2M then l\M, if / is even

and l\2M then { \M). Thus the denominator of

2W+ 1

2/

(1 + ¿7)(1 + ¿72) • • • (1 + ql)

(1 + qN)(l +qN~1)- ■ ■ (\ + qN~j+x)

has no zeros that are not cancelled by those of the numerator. This proves

Lemma 1.   □

Lemma 2. The ¿7- tangent numbers satisfy
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(2.4)
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N

T1N+x(q)+ 2 (-9)2,-1
7-1

2N + 1

V
(-l)JT2N+x_2j(q)

-i-ifi-iht

wAere («)„ = (a; q)„ = (1 - a)(l - aq) • • • (1 - a?""1), (a)0 = 1

Proof. We have

£    T2n+Á<l)x1^ =

n = 0

(2.5)
n-0 WJ2/1 + I

(-l)Vn+1 /«   (-l)V"

n=0

Now (here /' = V —1 )

s   (-0*"   2n + l

= 2

(?)2»+l (?) 2/1

(2.6)
n-0

(2.7)

Therefore

n-0 (?)2n

(9)2»+i »fo     (?)» 2

= M(4;-Fk;) (^[^p-19'^-(2.2.5)]);

y   (~1)V"-f   íV   (1 + (-1)")
»-0      (9)2B        --o   (9)„ 2

-i(-i_+_L_y

ÜÍ^-±(-J_LWi(_L_ + _L_)
2'l(/*)00    (-«)j2l(«).    (-*)J

»   (-«). + («)» " '   (-'x)J('x)k + !

Clearing the denominator on the right and utilizing the ^-binomial series

[1, p. 17, equation (2.2.1)], we find that

n=0 (*). n=0 (?)2„+l n = l (9)-

Let us now compare the real parts of the coefficient of x2N+x in this last

identity:

N

2T2N+X(q)+ 2 (-O2
y-i

2JV+ 1

2/ (-1)^2^.-2,(9) -(-iw-o*.

and if we divide each side of this identity by 2 we obtain the result stated in

Lemma 2.   □
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Theorem   1.   The polynomial (1 + ¿7)(1 + ¿72) • • • (1 + qN)  divides  the

polynomial T2N+X(q).

Proof. The result is immediate for N = 0, 1 since Tx = 1 and F3 = ¿7(1 +

¿7). Let us now assume the result true up to but not including N.

Now

(-«h2/-1

2N + 1

2/
= (-?),(- *+%

= (l + ¿7")(l + ¿7"-')--

(1 + ¿7)0 + q2)

2N + 1

2/

(l+qN-J+x)(-f+%

X
(1 + qJ)

(l + qN)(\ + qN-X)

Hence by Lemma 1, (1 + qN)(\ + qN~x) ■ ■

2N + 1

2/■(l + qN~J+x)   [

(1 - qN~J+x) is factor of the

polynomial (-q)2j-i[2N2j1]- Bv the induction hypothesis (1 + ¿7)(1 +

¿72) • • • (1 + qN~j) is a factor of T2N+x_2J(q). Hence for 1 < / < N, we see

that ( - ¿7)^ is a factor of

(-i)J(-q)y- *2N+\-2j (q)y

2/V+ 1

2/

and since ( - ¿7)^ is obviously a factor of ( - q)2N we deduce from Lemma 2

that ( — q)N is a factor of T2N+X(q) as well. Thus Theorem 1 follows by

induction.

3. Conclusion. First we note that the result mentioned in the Introduction

about the divisibility of the T2n+X(q) by the cyclotomic polynomials <p2(¿7),

<f>4(¿7), . . . , <b2n(q) now follows from Theorem 1 since <p2„(q) divides (1 + ¿7").

We also note that the divisibility of T2n+X(q) by specific factors of the form

1 + qj can be handled again by Lemma 2. For example:

Theorem 2. The polynomial (I + q)" is a factor of the q-tangent number

T2n+i(q)-

Proof. The result is obvious for n = 0, 1 since F,(¿7) = 1 and F3(¿7) = ¿7(1

+ ¿7). Assume the theorem true up to but not including n. Now since

1  + 92M+1 = (1  + ^(,   _ q + q2 _  .   .   .   + q2M^   we   see   that   (,   + qy   is   a

factor of (-¿7)2,-1. By the induction hypothesis (1 + q)N~J is a factor of

T2N+x_2J(q). Hence (1 + ¿7)^ is a factor of

2N + 1
i-q) 2/-1 (-1)^+1_2,(¿7),

and since (1 + ¿7)^ is also a factor of (-q)2N, we deduce from Lemma 2 that

(1 + ¿7)" is a factor of T2N+X(q).
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