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SOME "ALMOST-DOWKER" SPACES

BRIAN M. SCOTT

Abstract. Call X an AD-space (for "almost-Dowker") if it is T3 but not

countably metacompact. We construct, without set-theoretic assumptions, a

class of zero-dimensional, orthocompact, nonnormal AD-spaces. Using the

same techniques, we simplify an example due to Hayashi by showing that if

exp(exp((o)) = exp(<j|), (e.g., if the continuum hypothesis holds), the "Cantor

tree of height ui{" is also such a space.

Since X X [0, 1] is orthocompact iff X is orthocompact and countably

metacompact, we now have "absolute" examples of orthocompact Tikhonov

spaces whose products with [0, 1] are not orthocompact.

0. Introduction. Although completely settled in [7], it was for many years an

open question whether every F4-space is countably paracompact. In [6], M. E.

Rudin had shown that if there is a Suslin tree, then there is a Dowker space,

i.e., a counterexample to the above conjecture, thereby bringing the question

into the realm of set theory. Then, in [4], Jensen announced that there are

Suslin trees in the constructible universe, from which it follows that the

existence of Dowker spaces is at least consistent with ZFC (Zermelo-Fraenkel

set theory with the axiom of choice). However, it was later shown [10] that the

nonexistence of Suslin trees is also consistent with ZFC. Fortunately, at about

the same time the example of [7], which "exists" in ZFC alone, was

discovered. Since then one or two other Dowker spaces have been construc-

ted-for example, a first countable one of power co, whose construction

requires only the continuum hypothesis by way of extra set-theoretic

hypothesis {8]-but all of them are quite complicated, and all but that of [7]

are "consistency examples", i.e., they require additional set-theoretic

assumptions beyond the axioms of ZFC.

In view of the apparent scarcity of Dowker spaces, one might naturally

look also for "almost-Dowker" spaces; the problem is to decide just what

such a space should be. It is not hard to find examples of Tikhonov spaces

which are not countably paracompact: the familiar Cantor tree and the

hyperspace of the integers, for example. However, countable paracompact-

ness is, in the presence of normality, equivalent to countable metacompact-

ness, so we shall set our sights a little higher.

0.0. Definition. An AD-space is a F3-space which is not countably meta-

compact.
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It turns out that AD-spaces are almost as hard to come by as Dowker

spaces. The Cantor tree, for example, is a Moore space, hence perfect (closed

sets are G5-sets), hence countably metacompact; and the countable meta-

compactness of 2N remains undetermined. Example 4.2 of [9] is Hausdorff

and not countably metacompact, but it fails utterly to be regular. In [3],

however, Hayashi constructs-on the assumption, consistent with ZFC, that

2   = 2X for some regular A > w-a (nonnormal) AD-space.

The purpose of this paper is, by combining Hayashi's technique with a

result of Fleissner in [2], to produce an "absolute" example of a (nonnormal)

AD-space. As a by-product, we shall also obtain a "consistency example"

closely related to (but simpler than) Hayashi's.

1. Notation, conventions and preliminaries. All spaces in this paper are

assumed to be at least Tx. Ordinals are von Neumann ordinals, (i.e., an

ordinal is the set of smaller ordinals,) and are denoted by lower-case Greek

letters. Cardinals are initial ordinals and are denoted by k and X. If X is a

space, t(X) denotes the topology of X. If k is a cardinal, a GK-set in a space X

is one which is the intersection of k members of t(A'); Gw-sets are, as usual,

referred to as G^-sets. X is K-open if every GA-set in X, for X < k, is open in X;

every space, therefore, is w-open. If A and B are sets, AB is the set of

functions from A into B. Functions are viewed as sets of ordered pairs, and, if

/is a function, dorn/and ran/are, respectively, its domain and range; thus

/ C g iff dorn/ Q dorn g and gfdom/ = /. A space X is n-Baire iff every

intersection of k dense, open subsets of X is dense in X, (so that "to-Baire" is

just the usual notion of "Baire").

1.0. Definition. Let <c and X be cardinals, with X > w and regular. Then

Z (k, X) is the space whose underlying set is \e, and whose topology is

generated by the base %(k, X) = {B(f): / E U { a«: a E X}}, where B(f) =

{x E Z(k,X): f C x). It is easily seen that Z(k,X) is always X-Baire.

(Indeed, it follows from [5] that Z(k, X) is non-Archimedean, X-metrizable,

and hereditarily ultraparacompact, for example.)

1.1. Definition. Let k and X be as above, and let X C Z(k,X). Then

%x(k, X) = {B E %(k, X): B n X =£ 0}, and T(X) is the space whose

underlying set is %X(K> X) u X, topologized as follows: each element of

%x (K> A) is an isolated singleton, and a base at a point x E X is given by

%(x) = {N(x, a): a E X), where N(x, a) = {x} u {B(f) E <$>x(k, X): f Ç

x&aQdomf). Clearly, T(X) is X-open, Tikhonov, zero-dimensional,

and-for later reference-orthocompact (i.e., every open cover, T, of T(X) has

an open refinement, 91, which covers T(X) and has the property that if

% Q % then n % E t(F(A-))).
The following proposition is hardly more than a restatement of the

definition of A-Baireness.

1.2. Lemma. Let k and X be cardinals, with X > w and regular, and let X be a

X-Baire subspace of Z(k, X). Let Y be a X-Baire, dense subspace of X, and
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suppose that Y = IJ { Ya: a E A}. Then, for any B(f) E 9¡x(k, X), there are a

B(g) E %x(k, X) and an a E X such that B(g) C B(f) (i.e.J C g,) and Ya is

dense in B(g) n Y.

(Lemma 1.2 is obviously a special case of a more general result; it is stated

in this form for future use.)

The key result is the following.

1.3. Theorem. Let k, X and X be as in Lemma 1.2, but with X > to, and

suppose that X = U {Xn: n E ¿o} where each Xn is X-Baire and dense in X, and

X„ n Xm = 0 whenever n < m < to; then T(X) is not countably metacompact

(and is therefore an AD-space).

Proof. For n E w, let Fn = (J {X¡: n < / < to), a closed subset of T(X);

then the F„'s are decreasing and have empty intersection, so it suffices to

show that if, for each n E u, Fn Ç W„ E t(T(X)), then fl {W„: n E w} J-

0. Suppose, therefore, that the W^'s are as stated; then there is a function <p:

X ->A such that, for each x E X, N(x, <b(x)) C Wn whenever x E Fn. For

each n E to and a EX, let Xn(a) = {x E Xn: <b(x) < a).

Repeated applications of Lemma 1.2 now allow us inductively to construct

sets {B(fn): « E to) Ç $*(«, A) and {a„: n E u) C X such that for every

n E ¿o, Xn(an) is dense in B(fn) n X, an Q dom/„, an+x > an, and B(fn+X) C

B(f„). Let a = sup{a„: n E a), let/ = U {/„: n E to}, and choose B(g) E

%x(k, X) so that B(g) C B(f) and a E dorn g.

Then Xn(a„) is dense in B (g) n X for each « E to, so, in particular, there is

an xn E Xn(an) n B(g). Thus, for each n E to, ¿p(x„) < a„ < a E domg,

and g C xn, so-in T(X)-B(g) E N(x„, <b(xn)) C Wn. Thus, n {W„: n E ¿o}

¥= 0, and T(X) is an AD-space.

An even simpler application of the same idea yields the next theorem.

1.4. Theorem. Let k, X, and X be as in Lemma 1.2, and suppose that

^ = ^11 Xx, where X0 and Xx are disjoint, and each is X-Baire and dense in

X; then X0 and Xx are disjoint closed subsets of T(X) which cannot be separated

by disjoint open sets, and T(X) is not normal.

Having set the stage, we proceed to the examples.

2. A "consistency example". For the printer's sake we shall write exp(A) and

wexp(A), respectively, to denote 2X and 2- (= sup{exp(ic): X < X)).

2.0. Theorem. If \> u is regular, and exp(wexp(X)) = exp(A), then

T(Z(2, X)) is a nonnormal AD-space.

Proof. The proof is a simple application of Theorems 1.3 and 1.4. We first

observe that \%(2, X)\ = X ■ wexp(A) = wexp(X), so that |t(Z(2, a))| <

exp(wexp(A)) = exp(A). Let ê = {G C Z(2, X): G is a, dense GA-set}; then

|8| < |t(Z(2, A))|* < (exp(A))A = exp(X). Thus %(2, X) X § X to can be

enumerated in type exp(A) as {(B(fa), Ga, na}: a < exp(A)}.

Now, for a < exp(A), inductively choose xa E (B(fa) n Ga) \ {xß: ß <
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a}. That this is always possible follows from the

Lemma. IfB(f)E %(2, X) and G E §,then \B(f)n G\ = exp(X).

Assuming the lemma, put Xn = {xa: na = n) for each n E to. Clearly, each

X„ is a dense, X-Baire subspace of Z(2, X), and we now apply Theorems 1.3

and 1.4.

To prove the lemma, let T = {Va: a E X} C t(Z(2,X)) be such that

G = H % and let 5 be the set of sequences of O's and l's of length less than

X. We shall inductively choose, for s E 5, basic sets B (fs) E ® (2, X) such

that

(i)/< ) = /, where ( > is the empty sequence;

(ii)/ C ft whenever s, t E S with s an initial segment of t;

(iii) B(fs.0) n B(/.,) = 0 for each i E 5, where s- i is the sequence

formed by concatenating s with </>; and

(iv) if s E S is of length a, then B(fs) C f] { Vß: ß < a).

This is easily done; given/, find a gs such that B(gs) C B(fs) n Va, where a

is the length of s, and then choose B(fs.0) and B(f.x) so that they are

disjoint and contained in B(fs); and if s E S is of length a for some limit

ordinal a, and /, has been chosen for each initial segment, t, of s, let

B(fs) = H {•#(/,): / is an initial segment of j} E $ (2, X). Clearly, (i)-(iv) are

satisfied.

Now let X = {x EZ(2, X): Va E X3s E S (fs C x & a Q domfs)}; (ii)
and (iii) guarantee that \X\ = exp(X), and (i), (ii), and (iv) guarantee that

X CB(f)n G.

2.1. Corollary. If the continuum hypothesis holds, i.e., i/exp(to) = co,, then

Z(2, to,) is a nonnormal AD-space.

Proof. If exp(w) = w,, then, since wexp(«,) = exp(to), exp(wexp(co,)) =

exp(exp(w)) = exp(w,).

However, it is also consistent with ZFC that, say, exp(w) = w3 and exp(w,)

= exp(w3) = w5, so the continuum hypothesis is by no means necessary for

the above result. Similarly, we have:

2.2. Corollary. If the generalized continuum hypothesis holds, then Z (2, X)

is a nonnormal AD-space whenever X > w is regular.

3. An "absolute" example. We first generalize some familiar notions

pertaining to ordinals.

3.0. Definition. Let k and X be regular cardinals, with w < X < k; a set

5 Q k is X-cub iff |5| = k and, whenever (etc: £ E X) is a strictly increasing

X-sequence of members of 5, supfc^: £ E X} E 5; 5 is X-stationary iff 5

meets every X-cub subset of k.

3.1. Proposition. Let k and X be as in Definition 3.0, and let Q be a family

of fewer than k X-cub subsets of k; then C0 = D G is X-cub.

The proof of Proposition 3.1 is a straightforward modification of the proof
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that the intersection of fewer than k cub subsets of a regular /c > to is cub.

Proposition 3.1, together with the method of [11], yields the following

theorem.

3.2. Theorem. Let k and X be cardinals, with to < X < k and X regular, and

let S C k+ (the next cardinal after k) be X-stationary. Then S can be

partitioned into K+X-stationary sets.

3.3. Definition. Let a and ß be ordinals, with a < ß, and let/ Eaß; /is

normal iff /(£) < /(tj) whenever £ < tj < a, and /(tj) = sup{/(£): £ < tj}

whenever tj < a is a limit ordinal. If X > to is regular, we let Xx = {x E

Z(w exp(A)+, A): jc is normal}.

The following generalizes a result of Fleissner's [2].

3.4. Theorem. Let X > to be regular, let k = wexp(A)+, let S Q a be

X-stationary, and let XX(S) = {x E Xx: x E S), where x = sup ran x. Then

XX(S) is X-Baire and dense in Xx.

Proof. Only the first assertion requires proof. Let ^ = {/: B(f) E

%(k, X)&f is normal} = {/: B(f) E ^(k, A)}. Let 'Y = {Va: a E A} ç

t(Xx) be a family of dense sets, and fix/ E Çf arbitrarily; we must show that

Xx(S)DB(f)n DcV^0.

For each a E X, let 2a = {a E f : / C <j(0) & a(£) Ç <j(tj) whenever £ < tj

< a & V£ E a(B(a(0) Q V¿)), and let 2 = U {2a: a E A}. For each a E 2,

let /„ = U {<*(£): £ E dom a), and let ô = fa. Since the members of T are

dense and open in Xx, there is a function ¿|>: 2 x k -» 2 with the following

property: if a E 2, tj E k, and t = ¿Ka, tj), then a C t and f > tj.

For a E k, let Ua = «a, tj> E 2 X a: ê < a}, and note that |IIJ <

wexp(A) < k. Thus, there is a function \p: <c -» k such that, for each a E k, if

(a, tj> E na and t = ¿Ka, tj), then f < i//(a). Let C = (a E k: V/? < a

(i//(/?) < a)}; it is easily seen that C is cub in k. Thus, there is an tj E 5 n C

such that c/(tj) = A.

Let (ijj: | E A) converge up to tj. Fix a0 E 2 arbitrarily with ¿50 < tj.

Given 0£ E 2 (for some £ £ A) with âc < tj, let ai+1 = <b(oç, tjj); and if £ E A

is a limit ordinal and a„ E 2 with â„ < tj has been defined for each v < £ so

that a„ C Op whenever v < p < £, let a{ = IJ {a„: ? < £}.

Finally, let o = U {<*$: £ E A}, and let x = IJ {<*(£): £ £ A}; obviously

xEXx(S)nB(f)n nT.
It is now a simple matter to combine Theorems 1.3, 1.4, 3.2 and 3.4 to get:

3.5. Theorem. Let X and Xx be as in Theorem 3.4; then T(XX) is a

nonnormal AD-space.

4. Remarks. Dowker showed in [1] that the countably paracompact ones are

precisely the normal spaces whose products with the interval [0, 1] are

normal. Similarly, it was shown in [9] that the countably metacompact ones

are precisely the orthocompact spaces whose products with [0, 1] are ortho-

compact. Since the orthocompactness of none of the known Dowker spaces
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has been determined, Theorem 3.5 gives the first "absolute" example of a

regular (in fact, zero-dimensional), orthocompact space whose product with

[0, 1] is not orthocompact.
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