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COMMUTATIVE PERFECT QF-1 RINGS

HIROYUKI TACHIKAWA

Abstract. If R is a commutative artinian ring, then it is known that every

finitely generated faithful Ä-module is balanced (i.e. has the double

centralizer property) if and only if R is a quasi-Frobenius ring. In this note,

constructing new nonbalanced modules we prove that the assumption on R

to be artinian can be replaced by the weaker condition that R is perfect.

As an example which shows that the balanced condition for modules have

strong influence on the structure of rings we can give a theorem of Ringel [7]

and Starrer [8], [9] that commutative noetherian strong QF-1 rings are QF

(i.e. quasi-Frobenius). This is a generalization of a theorem of Camillo [1] and

Dickson and Fuller [3] for commutative artinian rings, which is also a

generalization of Floyd's result [4] for commutative algebras over an

algebraically closed field. Here a module M over a ring R with identity 1 is

called balanced if the canonical ring homomorphism of R into the double

centralizer of M is surjective, and following R. M. Thrall [10] R is said to be

QF-1 (resp. strong QF-1) if every finitely generated faithful (resp. every

faithful) Ä-module is balanced.

In connection with commutative QF-1 rings V. P. Camillo [2] studied rings

with the principal extension property (i.e. every module homomorphism from

a principal ideal into R can be extended to an endomorphism of R) and he

gave a commutative semiprimary local ring with a simple socle, which

satisfies the principal extension property, but is not a PF ring (i.e. a self-

injective cogenerator ring). Though he did not succeed to determine whether

it is QF-1 or not, the example suggests to us a question whether commutative

perfect QF-1 rings are PF (equivalently QF by Osofsky [6, Theorem 3]) as

similarly as in commutative noetherian strong QF-1 rings.

The purpose of this paper is to give an affirmative answer to this question.

We shall prove

Theorem. Let R be a commutative perfect ring. Then every finitely generated

faithful R-module is balanced if and only if R is a quasi-Frobenius ring.

The proof of the Theorem uses the following lemma concerned with

constructions of new nonbalanced modules.
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Lemma 1. Let R be a commutative local ring with the essential socle and N

the Jacobson radical of R. For ideals Kpj = 1, 2, let us denote AnnÄ Kj = (r

G R\Kjr = 0} by Lj. If R is QF-l and NKX eK2e Kx, then YlomR(Kx/K2,

Soc R) is R-isomorphic to either L2/Lx or L2/Lx © R/N.

Proof. Let A be the 7?-endomorphism ring of Kx and denote by A the

subring of A consisting of endomorphisms induced by the multiplication with

elements of R on the right hand. We can identify A with R/Lx and then

YlomR(Kx/K2, Soc R) n A = L2/Lx.

Suppose that there exist p, o E UomR(Kx/K2, Soc R)\L2/LX such that

a $ A + Ap. By [1, 19. Lemma] and our assumption Soc R is simple and

essential. Hence, considering p and a as elements of A, both Ker p and Ker o

contain Soc R and

(1) p2 = a2 = pa = ap = 0.

Further as R is commutative, ap = pa and aa = oa in A for all a E A, and

(2) RAp « RAo « ÄÄ/JV.

Therefore ^4 + Ap + Aa (= A (& Ap (B Aa) may be considered as a subring

of J.
Now, put S = {(&, kp,ko)ER®R®R\kEKx] and consider a left

Ä-module M = (R @ R ® R)/S. Then Af is faithful, because for any r E R

(0, 0, r) = 0 mod 5 implies r = 0.

The endomorphisms of RM may be lifted to endomorphisms of RR © R

© Ä with 5 as their stabilizer, thus to matrices (r¡f), ry G R and i,j = 1, 2, 3,

such that

(krxx + kpr2x + kar3X)p = krX2 + kpr22 + kar32,

(krxx + kpr2X + kor3X)o = krX3 + kpr23 + kar33,

for all k E Kx. Then by (1) and (2) we have

ru - >22 - 'n - r33 = r23 = r32 = 0   mod N

and rx2 = rx3 = 0 mod Lx.

Choose an element b of À', such that b £ ker p and let us define an

additive homomorphism ^' of R © R © R into itself by (rx, r2, r3) \-> (br3,

0, 0). Since *' maps S into 5 and b g Ker p, ^' induces a nonzero additive

endomorphism ^ of Af. Moreover by the following way we can show that ¥

commutes with all endomorphisms of RM:

[*'(/•„ r2, r3)](r¿ = (r3rxxb, r3brX2, r3brX3)

= n(r^2,r3)(ry)].

On the other hand, ^ vanishes on the submodule

[/I(0,1,0) + S]/S = R(0, 1, 0)/[ä(0, 1,0) n S] = R(0, 1,0).

Thus * is not induced by the multiplication with any element of R on the left
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hand. This contradicts that R is QF-1. Thus

HomÄ(A,/A2, Soc R) = L2/Lx © Ap

or L2/Lx, and the conclusion is now clear.

Lemma 2. Let R be a commutative local ring with the essential socle and N

the Jacobson radical. For any positive integer j let us denote AnnÄ NJ = {r £

R \Njr = 0} by Soc7 R. If R is QF-l and Soc,+xR/Soc'R # 0, i - 1, 2.n,

then all N'/Ni+ ' and Soc' + xR/Soc'R are finitely generated R-modules.

Proof. Let L, = Ann* Soc'Ä = {/• E Ä|(Soc'Ä)r = 0} for / = 1, 2, . . ., n.

We shall proceed our proof by induction and from the assumption that

R/Nk, k < n, is artinian we shall conclude that Nk/Nk+X is a finitely

generated Ä-module. Suppose Nk/Nk+X is not finitely generated. By Lemma

1 we have isomorphisms

HomR(Nk/Nk+x,SocR)

(3)
* Sock+xR/SockR    or    Sock+xR/SockR® R/N

and

(4)   HomR(Sock+xR/SocK+xR,Soc R) = Lk/Lk+X   or   Lk/Lk+X@ R/N.

Since R is a local ring, R/N is isomorphic to a field F Then Nk/Nk+X,

Sock+xR/SockR, Lk/Lk+X, Hom^iSoc** lR/SockR, Soc R) and

Hom^A^/A*"1"1, Soc R) are considered as F-vector spaces. Further

Lk/Lk + X + Nk is a finite dimensional F-vector space, for Lk/Lk+X + Nk is a

homomorphic image of Lk/Nk and R/Nk is artinian. Hence if

Soc^'/v/Soc*/? = ©AF,   Nk/Nk+X s ©rF

and Lk/Lk+X ss ©AF, then

HomÄ(Soc*+'A/Soc*/?, Soc R ) s nAF,    HomÄ(A7 A*+\ Soc /? ) « IIrF

and Lk+X + Nk/Lk+X » Nk/Lk+X n A* ^ ©AF Denote the cardinalities

of F, A, T and A by c, X, y and 5 respectively. Then it follows by (3), (4) and

our assumption that y, X and 8 are infinie, cy = X, cx = 8 and 8 < y (cf. [5,

IV, §4, Theorem 1]). Thus we have c(cT) < y, but this is a contradiction.

Consequently both Nk/Nk+X and Soc*+'A/Soc* R are finitely generated

/\-modules.

Proof of Theorem. Let R be a commutative perfect QF-1 ring. A

commutative perfect ring is a direct product of finitely many local rings and a

direct product of finitely many rings' is QF-1 if and only if each component

ring is QF-1. So, without loss of generality we may assume R is local. Then it

is obvious that R satisfies the assumptions in Lemmas 1 and 2. Hence A/A2

is a finitely generated Ä-module and by [6, Lemma 11] R is artinian.

Therefore by Camillo [1, 22. Theorem] and Dickson and Fuller [3, Theorem]

R is QF.

The converse is well known. This completes the proof.
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