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A METRIC INEQUALITY CHARACTERIZING BARYCENTERS

AND OTHER PETTIS INTEGRALS

RUSSELL G. BILYEU

Abstract. Certain Pettis integrals, including barycenters of probability

measures on weakly compact subsets of Banach spaces, are characterized by

an integral inequality which refers only to distances between points, avoid-

ing any reference to the linear structure of the Banach space. This is an

elaboration of the Mazur-Ulam discovery that the metric determines the

linear structure.

This paper extends from finite sums to fairly general integrals the following

theorem of Wolfe [7]:

Theorem. If \\x — x0\\ < 2a,||x - x,|| (a, > 0, 2a, = 1) for each x in a

Banach space then x0 = Sa,*,.

Wolfe's ingenious technique for avoiding the tedious argument of [3] made

use of the derivative of the norm. This technique adapts to the present case

because of a result of Asplund [2] insuring the density of smooth points in

weakly compactly generated Banach spaces. The most direct extension of

Wolfe's theorem is the following.

Theorem 1. Suppose that S is a weakly compact subset of the Banach space

X and that ¡i is a regular Borel probability measure on the weak Borel subsets of

5. Then the barycenter

x0 — I x d¡i(x)
Js

exists (as a Bochner integral) and is the unique element x0 E X satisfying

\\y - xA^\\y - X\\MX)

for ally E X.

This result is a corollary to more general results concerning Pettis integrals

of certain functions with values in X, to which we now turn our attention.

The one-sided derivative of the norm may be defined as

D + (x,y) = lim(||nx + .y|| - \\nx\\),       n -> oo.
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If D +(x, — y) = — D +(x,y) for each>> E X then x is called a smooth point

of X and D +(x,y) is written D(x,y). In that case, D(x, ■ ) is a continuous

linear functional on X. Such functionals are called Gateaux differentials of

the norm.

(S, 2, jli) denotes a measure space with p > 0 and p(S) = 1, and/: S —» A'

denotes a function such that, for each jc E Ar, ||x — /( )|| is /¿-integrable.

Theorem 2. // || jc - jc0|| < f\\x - f( )|| du for each x E X then, for each

uEX,

D + (u,x0)<fD + {u,f())dp.

Furthermore, for each smooth point u of X,

D(u,x0)=fD(u,f())dli.

Proof. Observe that the sequence of functions \\nu +/( )|| - \\nu\\, n =

1, 2, 3, ..., is nonincreasing and that each function in the sequence has its

absolute value bounded by ||/( )||. The dominated convergence theorem

implies that

D + (u, x0) = lim(||/iM + x0|| - ||rtw||)

<lim J(||««+/()|| -\\nu\\)dp

= Jlim(||m¿+/()||-||m<||)¿/íi

= f D + (u,f())dp.

If w is a smooth point we also conclude that

- D(u,x0) = D+(u, - xQ) = D + (-u,x0) <JD+(-u,f())dli

= fD + (u,-f())dlx=-fD + (u,f())dfL;

therefore, D(u, x0) = / D(u,f( )) d\i.

Theorem 3. Suppose \\x - x0\\ < f\\x - f( )|| dp for each x E X and the

Pettis integral ff dp. exists in X. Suppose also that the Gateaux differentials of

the norm are total over X. Then x0 = jf dp..

Proof. By Theorem 2, if u is a smooth point then

D(u,x0)=f D(u,f())dp.

The Pettis integral is so defined that

D^u,ffdpj=JD(u,f())dp.



A METRIC INEQUALITY 325

Thus x0 - ffdfi is annihilated by D(u, ■ ), and the totality hypothesis implies

xo = Sfdii.

Lemma. The Gateaux differentials of the norm are total over a weakly

compactly generated Banach space.

Proof. Let I be a weakly compactly generated Banach space. Suppose

that y E X is annihilated by every Gateaux differential of the norm. Let x be

a smooth point of X. For each positive integer n,

||jc|| = ||«x + jc|| - ||«x|| < \\nx + jv|| + \\y - x|| - ||n;c||.

Consequently, ||x|| < ||.y - jc|| + D(x,y). Ku\D(x,y) - 0; hence \\x\\ < ||.y

— x 11 for each smooth point x. By a theorem of Asplund [2], the smooth

points are dense in X. Considering a sequence of smooth points converging to

y, we conclude that y = 0.

Theorem 4. Suppose \\x - x0\\ < f\\x - f()\\ dfifor each x E X, the Pettis

integral ff dp exists in X, and the range off is contained in a weakly compact

set. Then xQ = ff d\i.

Proof. Let F be a closed linear subspace of X generated by a weakly

compact convex set which contains the range of / By an argument which

may be found in the book of Alfsen [1, Proposition 1.2.1], the Pettis integral

// d\i belongs to Y. As a consequence of the Lemma, Theorem 3 applies.

Theorem 5. Suppose \\x — xQ\\ < /||jc - /( )|| dp for each x E X and the

Gateaux differentials of the norm are fundamental (span a dense set) in X*.

Then the Pettis integral jf dp exists and is x0.

Proof. Pick x* E X*. The equation

x*(xo) = jx* °fdP

holds in case x* is a Gateaux differential of the norm, as a consequence of

Theorem 2. By linearity, the same equation holds if x* is a linear combination

of Gateaux differentials of the norm. In general, there exists a sequence (x*)

such that x* -> x* and

x*(xo) =/•** "fdn-

The dominated convergence theorem implies

x*(x0) = lim Jx* ° fdp= Jx* ° f dp.

Proof of Theorem 1. It is known that the Bochner integral fxdp(x)

exists. Being unable to supply a reference, we supply a proof. Grothendieck

proved that /x has separable support [5]. Therefore the range of the identity

function is u-essentially separable. Since the identity function is weakly

measurable, it follows from fundamental results of Pettis [6] and Bochner [4]

that the Bochner integral fx d¡x(x) exists. Call it x0. The desired inequality is



326 R. G. BILYEU

then a consequence of basic properties of integrals. Uniqueness follows from

Theorem 4.

Remark. The requirement that Gateaux differentials be total over X is

satisfied by reflexive spaces and by separable spaces, these being weakly

compactly generated. The requirement that the Gateaux differentials be

fundamental in X* is satisfied by reflexive spaces and also by cQ(A) for an

arbitrary set A. It is not satisfied by the separable Banach space C[0, 1], since

the linear span of the point masses is not dense in the dual. Whether such

requirements are needed is unknown-we have no example of a Pettis

integrable function for which there exist more than one x0 satisfying the

metric inequality.
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