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ON PROJECTTVE PRIME IDEALS IN C(A)

J. GLENN BROOKSHEAR

Abstract. This note presents characterizations of the projective prime

ideals in C{X) and of the hereditary and semihereditary rings of continuous

functions.

This note presents a characterization of the projective prime ideals in

C(A), the ring of real-valued continuous functions on a completely regular

Hausdorff space A. This characterization is then applied to obtain a charac-

terization of the hereditary rings of continuous functions. The reader is

referred to [5] and [2] for background. The referee has pointed out that the

results in this paper can also be derived from the more general results

appearing in [4].

Lemma. Each projective prime ideal in C(X) is generated by an idempotent.

Proof. The following argument shows that a projective prime ideal is

finitely generated. The lemma then follows from Theorem 3 of [3].

Suppose P is a nonfinitely generated projective ideal in C(A). By Theorem

2.4 of [2], P is generated by a family {fa)aSA such that {cozfa)aBA is

star-finite. There is a countably infinite subset {Y¡)f=x G {cozfa}aBA such

that y, n Yj = 0 if / =£ j. Now, by the complete regularity of X, for each i

there is a g, E C(A) such that 0 < g, < ± and 0 =£ cozg, G Y¡. Neither

"2fLxg2i nor 2°l,g2,+i can be a finite linear combination of elements of

{fa}a<EA since {coz/a}a<E,t ¿s star-finite. However, both sums are in C(A)

and their product is 0 E P. Thus, P is not prime.

If x E A, let Mx denote the maximal ideal of C(A) consisting of functions

whose zero-sets contain x.

Theorem 1. A proper ideal in C(X) is a projective prime ideal if and only if

it has the form Mxfor some isolated x E A.

Proof. If x E A is isolated, then Mx is a summand of C(A) and hence

projective.

Suppose P is a proper projective prime ideal in C(A). By the previous

lemma, P is principal and hence fixed since it is proper. Thus, it is contained

in a fixed maximal ideal. But P is contained in only one maximal ideal [5,

2.11], so the idempotent generating P must be the characteristic function of
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X \ {x} for some x G X. Thus, P = Mx for some isolated x G X.

In [1] Bergman presents characterizations for the hereditary and semihe-

reditary commutative rings which can be applied to produce the following

results. However, the application of the results in [2] and the preceding

theorem provide a more straightforward and revealing approach in the

restricted setting of C(X).

First, it was shown in [2] that a principal ideal in C(A') is projective if and

only if the support of the generating function is open. Moreover, if X is

basically disconnected, then every finitely generated ideal in C(A^) is princi-

pal [5, 14N.4 and 14.25]. Thus, C(A") is semihereditary if and only if X is

basically disconnected.

Theorem 2. The following are equivalent.

(a) C(A") is hereditary.

(b) Every prime ideal is projective.

(c) Every maximal ideal is projective.

(d) X is finite and discrete.

Proof. Clearly (a) implies (b) which implies (c). Moreover, if all maximal

ideals are projective, they must be fixed at isolated points by Theorem 1.

Thus, X must be compact and discrete. Consequently, (c) implies (d). Finally,

if X is finite and discrete, every ideal in C(A") is a summand so (d) implies

(a).
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