ON PROJECTIVE PRIME IDEALS IN C(X)

J. GLENN BROOKSHEAR

ABSTRACT. This note presents characterizations of the projective prime ideals in C(X) and of the hereditary and semihereditary rings of continuous functions.

This note presents a characterization of the projective prime ideals in C(X), the ring of real-valued continuous functions on a completely regular Hausdorff space X. This characterization is then applied to obtain a characterization of the hereditary rings of continuous functions. The reader is referred to [5] and [2] for background. The referee has pointed out that the results in this paper can also be derived from the more general results appearing in [4].

LEMMA. Each projective prime ideal in C(X) is generated by an idempotent.

PROOF. The following argument shows that a projective prime ideal is finitely generated. The lemma then follows from Theorem 3 of [3].

Suppose P is a nonfinitely generated projective ideal in C(X). By Theorem 2.4 of [2], P is generated by a family $\{f_{\alpha}\}_{\alpha \in A}$ such that $\{\cos f_{\alpha}\}_{\alpha \in A}$ is star-finite. There is a countably infinite subset $\{Y_i\}_{i=1}^{\infty} \subseteq \{\cos f_{\alpha}\}_{\alpha \in A}$ such that $Y_i \cap Y_j = \emptyset$ if $i \neq j$. Now, by the complete regularity of X, for each i there is a $g_i \in C(X)$ such that $0 \leq g_i \leq \frac{1}{2^i}$ and $\emptyset \neq \cos g_i \subseteq Y_i$. Neither $\sum_{i=1}^{\infty} g_{2i}$ nor $\sum_{i=1}^{\infty} g_{2i+1}$ can be a finite linear combination of elements of $\{f_{\alpha}\}_{\alpha \in A}$ since $\{\cos f_{\alpha}\}_{\alpha \in A}$ is star-finite. However, both sums are in C(X) and their product is $0 \in P$. Thus, P is not prime.

If $x \in X$, let M_x denote the maximal ideal of C(X) consisting of functions whose zero-sets contain x.

THEOREM 1. A proper ideal in C(X) is a projective prime ideal if and only if it has the form M_x for some isolated $x \in X$.

PROOF. If $x \in X$ is isolated, then M_x is a summand of C(X) and hence projective.

Suppose P is a proper projective prime ideal in C(X). By the previous lemma, P is principal and hence fixed since it is proper. Thus, it is contained in a fixed maximal ideal. But P is contained in only one maximal ideal [5, 2.11], so the idempotent generating P must be the characteristic function of

Received by the editors May 4, 1977 and, in revised form, September 14, 1977. AMS (MOS) subject classifications (1970). Primary 54C40; Secondary 34B15.

- $X \setminus \{x\}$ for some $x \in X$. Thus, $P = M_x$ for some isolated $x \in X$.
- In [1] Bergman presents characterizations for the hereditary and semihereditary commutative rings which can be applied to produce the following results. However, the application of the results in [2] and the preceding theorem provide a more straightforward and revealing approach in the restricted setting of C(X).

First, it was shown in [2] that a principal ideal in C(X) is projective if and only if the support of the generating function is open. Moreover, if X is basically disconnected, then every finitely generated ideal in C(X) is principal [5, 14N.4 and 14.25]. Thus, C(X) is semihereditary if and only if X is basically disconnected.

THEOREM 2. The following are equivalent.

- (a) C(X) is hereditary.
- (b) Every prime ideal is projective.
- (c) Every maximal ideal is projective.
- (d) X is finite and discrete.

PROOF. Clearly (a) implies (b) which implies (c). Moreover, if all maximal ideals are projective, they must be fixed at isolated points by Theorem 1. Thus, X must be compact and discrete. Consequently, (c) implies (d). Finally, if X is finite and discrete, every ideal in C(X) is a summand so (d) implies (a).

REFERENCES

- 1. G. M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc. 23 (1971), 214-236.
- 2. J. G. Brookshear, Projective ideals in rings of continuous functions, Pacific J. Math. 71 (1977), 313-333.
- 3. G. De Marco, On the countably generated z-ideals of C(X), Proc. Amer. Math. Soc. 31 (1972), 574-576.
 - 4. _____, Projectivity of pure ideals (to appear).
 - 5. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.

DEPARTMENT OF MATHEMATICS, MARQUETTE UNIVERSITY, MILWAUKEE, WISCONSIN 53233