VECTOR-VALUED CONTINUOUS FUNCTIONS WITH STRICT TOPOLOGIES AND ANGELIC TOPOLOGICAL SPACES

SURJIT SINGH KHURANA

ABSTRACT. It is proved that if X is a metric space, E a Banach space containing a σ -weakly-compact dense subset, then the space $(M_{\tau}(X, E'), \sigma(M_{\tau}(X, E'), C_b(X, E)))$ is angelic, $C_b(X, E)$ being all bounded continuous functions from X into E and $M_{\tau}(X, E')$ the dual of $C_b(X, E)$ with the strict topology β .

A Hausdorff topological space Y is called angelic if (i) every relatively countably compact subset of Y is relatively compact, and (ii) for any point x in the closure of a relatively compact subset A of Y, there exists a sequence, in A, converging to x [4, p. 534]. In this paper X will stand for a completely regular Hausdorff space, E a Banach space over K, the field of real or complex numbers, C(X, E) (C(X)) all E-valued (K-valued) continuous functions on X, and $C_h(X, E)$ $(C_h(X))$ all bounded E-valued (K-valued) continuous functions on X. We shall use the notations of [5] for locally convex spaces. Also the notations and results from [2] will be used. The topologies β , β_0 , β_1 , β_e (also denoted by β_{∞}) are defined on $C_b(X)$ in [9], [7], [8]-these topologies are defined for K = R, the reals, but naturally extend to $K = \mathbb{C}$, the complex field. β , β_0 , β_1 , β_{∞} are defined on $C_b(X, E)$ in [1], [2]. If $\mathcal{H}^{\infty} = \mathcal{H}^{\infty}(X, E) = \{ H \subset C_b(X, E) : H \text{ pointwise equicontinuous and } \}$ uniformly bounded}, the topology β_{∞} is the finest locally convex topology on $C_b(X, E)$ agreeing with pointwise topology on each $H \in \mathcal{H}^{\infty}$. It is well known that $M_{\tau}(X, E') = (C_b(X, E), \beta)', M_t(X, E') = (C_b(X, E), \beta_0)'$ and $M_{\infty}(X, E') = (C_b(X, E), \beta_{\infty})'$ (see [2]). If X is a metric, $M_{\infty}(X, E') =$ $M_{\tau}(X, E')$ and β and β_{∞} are both Mackey [2]; from this it follows that $\beta = \beta_{\infty}$ in this case.

If X is a metric space it is proved in [5, Theorem 5.3] that $(M_{\infty}(X), \sigma(M_{\infty}(X), C_b(X)))$ is angelic. We will extend this result to $M_{\infty}(X, E')$ for some special Banach spaces E.

THEOREM 1. $(F', \tau(F', F))$ is complete, τ denoting the Mackey topology of the duality $\langle F, F' \rangle$, where $F = C_b(X, E)$ and $F' = M_{\infty}(X, E')$.

PROOF. By Grothendieck completeness theorem [5, Theorem 6.2, p. 148], it is enough to prove that any linear form μ on F which is continuous on every

Received by the editors May 6, 1977 and, in revised form, August 8, 1977. AMS (MOS) subject classifications (1970). Primary 46G10; Secondary 28A45, 54E99.

absolutely convex compact subset $(F, \sigma(F, F'))$ with topology induced by β_{∞} , belongs to F'. Considering μ : $(C_b(X, E), \|\cdot\|) \to K$, we first prove that $\|\mu\| < \infty$. Since a norm convergent sequence has a compact absolutely closed convex hull, we get $\|\mu\| < \infty$ (standard argument). Fix an $x \in E$ and an $H \in \mathcal{H}^{\infty}(X, K)$, H absolutely convex and closed with pointwise topology. H is $\sigma(C_b(X), M_{\infty}(X))$ -compact [2], [3]. From this it easily follows $H \otimes x$ is $\sigma(F, F')$ -compact and absolutely convex and so $\mu_x \in M_{\infty}(X)$ which implies that $\mu \in M_{\infty}(X, E')$ [2].

THEOREM 2. If X is a complete metric space, then $\beta = \beta_{\infty} = \beta_0$.

PROOF. Since X is a complete metric space, $M_t(X, E') = M_{\tau}(X, E') = M_{\infty}(X, E')$. Also β and β_{∞} are both Mackey [2]. From this we get $\beta = \beta_{\infty}$. Let P be an absolutely convex compact subset of $(F', \sigma(F', F))$, where $F = C_b(X, E)$ and $F' = M_{\infty}(X, E')$. This means |P| is relatively compact in $(M_{\tau}(X), \sigma(M_{\tau}(X), C_b(X)))$ [2, Proof of Theorem 3.7]. When E = K and X is a complete metric space, $\beta = \beta_0$ [7, Theorem 5.8(a)] and so |P| is β_0 -equicontinuous. Thus, given $\varepsilon > 0$, there exists a compact $K \subset X$ such that $|\mu|(X \setminus K) < \varepsilon$, $\forall \mu \in P$. This proves P is β_0 -equicontinuous [3, Lemma 2].

THEOREM 3. Let X be a metric space and suppose E contains a σ -weakly-compact dense subset. Then $(F', \sigma(F', F))$ is an angelic space, where $F = C_b(X, E)$, $F' = M_{\infty}(X, E')$.

PROOF. Since $(F', \tau(F', F))$ is complete, relative countable compactness implies relative compactness in $(F', \sigma(F', F))$ [5, Theorem 11.2, p. 187]. Let \tilde{X} be the completion of X and let K_0 be a relative compact subset of $(F', \sigma(F', F))$ and $\lambda_0 \in K_1 = \text{closure of } K_0$. Every $\mu \in M_{\tau}(X, E')$ gives rise to $\tilde{\mu} \in M_{\tau}(\tilde{X}, E')$, $\tilde{\mu}(g) = \mu(g|_{X})$, $\forall g \in C_b(\tilde{X}, E)$. Thus \tilde{K}_1 is compact in $(F'_1, \sigma(F'_1, F_1))$, where $F_1 = C_b(\tilde{X}, E)$ and $F'_1 = M_{\tau}(\tilde{X}, E')$. Since $\beta_{\infty} = \beta = \beta_0$ on $C_b(\tilde{X}, E)$ and β_{∞} is strongly Mackey, there exists an increasing sequence $\{D_n\}$ of compact subsets of \tilde{X} such that $|\mu|(\tilde{X} \setminus \bigcup_{n=1}^{\infty} D_n) = 0$, $\forall \mu \in \tilde{K}_1$. Also since $F_2 = C_b(\tilde{X}) \otimes E$ is dense in $(F_1, \sigma(F_1, F'_1))$, the topologies $\sigma(F'_1, F_1)$ and $\sigma(F'_1, F_2)$, restricted to \tilde{K}_1 , coincide [2].

Let $X_1 = \operatorname{cl}(\bigcup D_n)$ in \tilde{X} , and let X_2 be a compact metric space in which X_1 is densely embedded (note X_1 is a separable metric space). For a $\tilde{\mu} \in \tilde{K}_1$, $f \in C(X_2)$ and $x \in E$, define $\tilde{\mu} \in M_{\tau}(X_2, E')$, $\tilde{\mu}(f \otimes x) = \tilde{\mu}(f_1 \otimes x)$, where f_1 is any continuous extension of $f|_{X_1}$ to \tilde{X} with $||f_1|| = ||f||$ (sup norm) (this is possible by the Tietze extension theorem; also $\tilde{\mu}$ is well defined). Since $C(X_2)$ is separable in norm topology and $C(X_2) \otimes E$ separates the points of $\tilde{K}_1 = \{\tilde{\mu}: \mu \in K_1\}$, there exists a countable subset P_1 of the unit ball of $C(X_2)$ such that $P \otimes E$ separates points of \tilde{K}_1 (note $P \otimes E = \{p \otimes x: p \in P, x \in E\}$ [5]). This gives a countable set P_2 in the unit ball of $C_b(\tilde{X})$ such that $P_2 \otimes E$ separates points of \tilde{K}_1 . So we get a countable set P in the unit ball of $C_b(X)$ such that $P \otimes S$ separates the points of K_0 , K_1 being the closed unit ball of K_2 . Giving K_1 the discrete topology and K_2 the topology induced by the weak topology on K_2 , we see that K_2 is with product topology, has a K_1 -compact

dense subset. Also for any $f \in C_b(X)$ and $\mu \in M_\tau(X, E')$, $\mu(f \otimes \cdot) \in E'$ and so every $\mu \in M_\infty(X, E')$ is continuous on $P \times S$. Let $\{\mu_\alpha\}$ be a net in K_0 such that $\mu_\alpha \to \lambda_0$, pointwise on $C_b(X, E)$. By [4, Theorem 0.1] there exists a sequence $\{\mu_n\} \subset \{\mu_\alpha\}$ such that $\mu_n \to \lambda_0$ on $P \times S$. This implies $\mu_n \to \lambda_0$ on $C_b(X, E)$, since K is compact and $P \times S$ separates the points of K. This proves the result.

I am grateful to the referee for useful suggestions.

REFERENCES

- 1. R. A. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853.
- 2. S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. (to appear).
- 3. S. S. Khurana and S. A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284.
- 4. J. D. Pryce, A device of R. J. Whitley applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. 23 (1971), 532-546.
 - 5. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.
- 6. J. Schmets and J. Zafarani, Topologie stricte faible et mesures discrètes, Bull. Soc. Roy. Liège 43 (1974), 405-418.
- 7. F. D. Sentilles, Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc. 168 (1972), 311-336.
- **8.** F. D. Sentilles and R. F. Wheeler, Linear functionals and partition of unity in $C_b(X)$, Duke Math. J. 41 (1974), 483-496.
- 9. R. F. Wheeler, The strict topology, separable measures and paracompactness, Pacific J. Math. 47 (1973), 287-302.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242