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NONHOMOGENEITY OF PRODUCTS

OF PREIMAGES AND 77-WEIGHT

eric K. van douwen

Abstract. We prove a general nonhomogeneity result which implies among

others

(1) if X is a homogeneous Hausdorff space, then |X"| < 2"(;f);

(2) no power of ß (w) - u, or of ßQ - Q or of ßR - R is homogeneous.

1. Introduction. A space X is homogeneous if for every two points x, y of A

there is a homeomorphism from X onto itself which maps x onto_y. A m-base

for a space A is a family % of nonempty open sets such that each nonempty

open set of A includes a member of % ; the m-weight of a space A, it(X), is

to • mind® |: ® is a w-base for A).

In this paper we present a technique, inspired by an idea of Frolik, which is

useful for showing that certain spaces are not homogeneous. Roughly speak-

ing, Frolik, showed that a space is not homogeneous by showing that

discrete C*-embedded sequences of points do not cluster in the same way at

all points, [F,], [F3]. We consider instead completely arbitrary sequences of

members of some suitable family of subsets. We make this precise in §2,

where we formulate a simple criterion for nonhomogeneity. The contraposi-

tive of this criterion immediately leads to the following quite unexpected

result.

1.1. Theorem. If X is a homogeneous Hausdorff space, then \X\ < 2r(X\

Actually we are interested in proving nonhomogeneity. Our main result,

Theorem (4.1), implies that if A is Hausdorff and |A| > 2w(Jr), then no power

of A, or of certain preimages of A, is homogeneous. For example, no power

of ßN — N is homogeneous (this answers a question of Murray Bell), and no

power of ßQ — Q is homogeneous. A special version of our main result is

Theorem (5.1), which deals with high powers. It implies among others that if

P is the product of more than 2" homeomorphs of ßQ — Q, then it is

extremely easy to find two points p and q in P such that no homeomorphism

of P onto itself maps p onto q: just let p be a point all coordinates of which

are equal, and let ? be a point having more than 2" pairwise distinct

coordinates.
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The organization of this paper is as follows. In §2 we formulate our

criterion for nonhomogeneity, in §3 we collect some lemmas, needed to apply

the criterion for proving our main result. The main result is in §4, together

with applications. §5 deals with high powers, and in §6 we comment on

related techniques and collect questions.

A cardinal is an initial ordinal, and ordinal is the set of smaller ordinals. We

use tc, X and p to denote cardinals; we always assume tc > u>. A n-sequence is a

function with domain tc. We give all cardinals the discrete topology. U(k) is

the space of uniform ultrafilters on tc, or, equivalently,

U(k) = [p E /?(tc): \V n tc|= k for every neighborhood Vofp).

If A and B are sets, AB is the set of functions from A to B. If B also is a

space, and A ¥= 0, then AB gets the usual product topology. So "2 is a space,

2" is a cardinal. Also, if x E AB and SEA, then the projection of x into SB

is x\S, the restriction of x to S. The image and inverse image of A under a

map / are denoted byf~A and fA, respectively.

The density, d(X), and weight, w(A"), of a space X are defined as usual, [J];

note that by convention d(X) > w and w(A") > w for all spaces X. Q is the

space of rationals, R the space of reals.

I am indebted to the referee for carefully reading this paper and for

pointing out that my original argument in (4.7) was incomplete; this has

forced me to discover (3.3) and (4.1(c)).

2. All possible ways to cluster. Let A1 be a space, let »c > to be a cardinal and

let 5 be a family of subsets of X. Given x E X and d> G Ki, we are interested

in "the way <b clusters at x", w(x, <£). We make this precise by defining

w(x, <¡>) = [a E tc: x E Cl U {<#>(<*): et E a)}.

Then W(x, tc, Í) = {w(x, </>): </> G*á} is the set of all possible ways tc-

sequences in 5 cluster at x.

2.1. Definition. A family Í of subsets of a space X is called an invariant

family if WI E í for every / G í and every homeomorphism h of X onto

itself.

It should be clear that if X is homogeneous, then for every invariant family

í, for every tc and for every x andy, W(x, tc, 5) = W(y, k, 4). A particularly

useful special form of the contrapositive of this statement yields the following

result.

2.2. Criterion. The space X is 770/ homogeneous if there are an invariant

family Í, a cardinal tc, a ¿> G"5, and a point/» G X such that

\W(p,Kj)\ <\{w(x,<b):xEX}\.

Proof. Find x E X such that w(x, <b) G W(p, tc, Í). Then W(p, tc, 5) ^

W(x,k,I).   U

3. Tools for proving nonhomogeneity. If one wants to prove that a space X is

not homogeneous, with the use of (2.2), one has two tasks to perform for a
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suitable k and a suitable invariant family í.

Task 1. Find ¿> E"i such that [w(x, <b): x G X) has big cardinality;

Task 2. Find/? E X such that W(p, k, 5) has small cardinality.

In the cases we care to consider, 2" is small and (2K)+ is big. The following

invariant families of subsets of a space are of interest for us:

DC (A): the cozero-sets of A;

91(A): the regularly open sets of A;

5(A): the open sets of A.

(Recall that U G X is regularly open if U = Int Cl U.)

We first show how the w-weight comes in.

3.1. Lemma. Let X be a Hausdorff space. Denote ir(X) by k. Assume that

Í = 5"(A), or that Í = %(X) and X is completely regular. Then there is

<#> E"i such that w(x, d>) ̂  w(y, <b)for any two distinct x,y G X.

Proof. In each case considered there is a <|>: k -» 5 - {0} such that (<Ka):

a E k} is a 7r-base. Let x, v E A be distinct. There is an open U in A with

x E i/,y g Cl 17. Then

{a Gic:<t>(a) G U) E w(x, <f>) - w(y, d>).   □

So if |A| > 2"w we can perform Task 1, with k = tr(X). In certain cases

this is useful in an indirect way, as our next lemmas show.

3.2. Lemma. Let X and Y be spaces, let f: X —> Y be a continuous surjection.

Let k be arbitrary, let $GK<5(Y)be given. Define ̂  E'^A) by xP(a) = f$(a),

a G k. Then

(a): if fis an open map, w(x, \p) = w(f(x), <j>)for all x E X;

(b): iffis a retraction, w(y, t|/) = w( y, <¡>)for all y G Y.

Proof, (a): Since f~Tp(a) = d>(a) for all a E k, one readily checks that

w(x, \p) G w(f(x), <p).since/is continuous, and w(f(x), <j>) G w(x, \p) since/

is open.

(b): w(y, \p) C w(y, <f) since/ is continuous, and w(y, <p) G w(y, \p) since

y G Y and i//(a) n Y = <p(a) for a G k.    □

The following lemma is particularly useful for compact A, for then the

condition on the map is automatically satisfied.

3.3. Lemma. Let X be a regular space which admits a perfect map f onto a

space Y. Let k = tt(Y). Assume that 5 = ?T(A), or tha( 5 = %(X) and Y is

completely regular. Then there is an S G X with \S\ = \Y\ and there is a

\¡/ EKÍ such that w(p, i^) =£ w(q, ^>)for any two distinct p, q E S.

Proof. Call / semi-open at x E X if Int Yj"U ¥= 0 for every neighborhood

U of x in A. We need the following

Claim. For each y E Y there is^n xe/"{y}at which / is semi-open.

Suppose this is false for a certain y E Y. Since A is regular andf\y) is

compact, we can find a finite family *% of closed sets in X such that

Inty/T = 0 for all F G % but IJ % is a neighborhood of f\y) in A. Note

that fT is closed in Y for each F E <§. So at the one hand f\\J %) has
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nonempty interior, being a finite union of closed sets with empty interior, and

at the other hand f*(U <$) is a neighborhood of y since /is a closed map. This

contradiction proves the Claim.

Because of the Claim there is an S E X such that / is semi-open at each

point of S and/|S: 5 —> Y is a bijection. There is a 77-base (</>{«): a E tc} for

Y such that <b(a) G %(Y) if 3 = %(X). We can define a map ^ G"i by

\p(a) = f"<K«), a G tc.

Let/», q E S be distinct. Then/(/7) 7e /(<?), so there is an open U in Y with

/(/») G [/ but f(q) G Cl y- Í7, since T is Hausdorff, being the perfect image of

a Hausdorff space. Let a = {a E tc: d>(a) Ç (/}. Then 12 G w(/7, xp) since/is

semi-open at/», but clearly a G w(<7, t/0-   □

We now proceed to Task 2. The key to all our results is the following

triviality:

3.4. Fact. Let 5 be a family of subsets of a space X. Then \ W(x, tc, í )| <

\ñ\Kforallx G X, all k.    \J

So we are interested in estimates for |5|. The following lemma gives some

easy known results. Better results are known, see e.g. [CH], but we have no

applications, basically because we are really interested in 151", with tc equal to

the 7T-weight. For completeness sake we indicate the easy proofs.

3.5. Lemma (a). \<&(X)\ < 2dW;

(b). \%(X)\ < 2dw;

(c). \%(X)\ < w(X)u ifX is Lindelóf.

Proof, (a): If D E X is dense, <&(X) = {int C\A:A ED).

(b): Each member of %(X) is the union of a countable subfamily of tfl(X),

so (b) follows from (a), since d(A") > co by convention.

(c): Let % be a base for X. Each member of %(X) is an Fa, hence is

Lindelöf, hence is the union of some countable subfamily of %.   □

No such estimates are available for $(X), of course, but we do not need

this.

3.6. Lemma. Let x be any point of any space X. Then W(x, tc, §(X)) =

W(x,K,$l(X))forallK.

Proof. Since <3l(X) Q ^(X), it suffices to prove that w(x, <>) G

W(x, k, ®,(X)) whenever <¡> EK(Ö(X). Given tf> EK(Ö(X), define 4, EKb7(X)

by t|/(a) = Int Cl 0(a), a G tc. Then 0 EK<Si(X) since Int F G <Sl(X) for any

closed F in X. But if U, V c X are open, then Un V = 0 if f (Int Cl U) n

(Int Cl V) = 0. It follows that w(x, 0) = w(x, 0).   D

We would be able to handle small powers with the results obtained so far;

see the proof of (4.1). The following lemma is what we need to handle big

powers.

3.7. Lemma. Let tc and X satisfy X > k > co. Let X be a space, and assume

either that d(X) < k and $ = 91, or that X is compact and % = %. Then for

every x EXX the following is true:
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W(x, k, |(AA)) = U { W(x\a, k, %(aX)): a GX, \a\= *}.

Proof. For nonempty a G Met ita be the projection from XA onto "X, and

write %a for $-( "A). We will need the following easy fact:

(a) For any nonempty a G X, if J E fya then iTaJ E ^.

We first observe that (a) and (3.2(a)) immediately imply that W^xla, k, fa)

G W(x, k, %^) for all nonempty uÇÀ.

We next show that for any x E XX and ¿> E"^ there is an a G X having

cardinality k, such that w(x, <p) G ^(xla, k, j-a). Because of (3.2(a)) it suf-

fices to prove that

(ß) For every <p GK%i there is an a G X with |<3| = k and there is a t// GK\a

such that <p(a) = m\\¡/(á) for all a E k, i.e. every <p E"^ depends on k

coordinates.

A moment's reflection shows that this follows from

(y) for every A G ^ there is an a G X with 1 < |a| < k and there is a

i6f-a with A = w~aB, i.e. every member of ^ depends on at most k

coordinates.

But this is known:

If [Xa: a E p) is any family of spaces with d(Xa) < 8 for each a G p,

then each member of ^v^e^AJ depends on at most 8 coordinates, [RS].

(The argument uses the fact that no pairwise disjoint family of open sets in

IiafE(1Aa has cardinality > 5, hence every regularly open set of IIae/lAa

includes a dense union of at most 8 basic open sets. The rest is easy.) And if

[Xa: a G p) is any family of compact spaces, then every continuous real-

valued function defined on Ila(S/1Aa depends on at most countably many

coordinates; as pointed out in [EP], this is an easy corollary to the Stone-

Weierstrass Theorem. (We are interested only in the cozero-sets in Ilae/JAa.

The following elementary proof is available: each cozero-set in Ha£llXa is

o-compact, hence is the union of at most countably many sets of the form

UaeiLBa, where Ba is an open Fa in Xa for all a G p, and Ba = Xa for all but

finitely many a. The rest is easy.)   □

3.8. Remark. Instead of cozero-sets we could have considered zero-sets in

this section.

3.9. Remark. An alternative way of performing Task 1 would be to find

</> EKi such that (Cl U {«K«): a G a)) n (Cl U {«X«): a G k - a}) = 0

for all a G k, provided X is compact. Indeed, then one can find for each free

ultrafilter f on k a point x G X with w(x, <p) = f, simply by choosing

x E fi (Cl U {<K«): a G a): a G <$}, and it is well known that there are 22"

ultrafilters on k, [CN, 7.4] or [GJ, 9.2]. One does not really need compactness,

it is sufficient to know that one can pick p(a) E <j>(a) for a E k such that

C\{p(a): a E k} has cardinality greater than 2K, e.g. because C\{p(a):

a G k} is compact. This can be used e.g. with A = ßQ - Q.

4. Nonhomogeneity. The following theorem implies (1.1), see also (5.1).

4.1. Theorem. If the space X admits a continuous map f onto a Hausdorff
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space Y with \Y\> 2"(r), then no power of X is homogeneous in each of the

following cases:

(a)/is open or is a retraction andd(X) < tr(Y);

(b)f is perfect, X is regular and d(X) < tr(Y); or

(c) X is compact Hausdorff and w(A') < 2"(y).

Proof. Denote tr( Y) by tc, and let X > 1 be arbitrary.

Case (a). Since XA" admits an open map onto X, it follows from (3.1) and

two applications of (3.2) that there is a 0 ekSS( xX) such that

\{w(x,<b):x EXX}\ =\Y\>2K.

It remains to find a point p EXX such that | W(p, k, $(xX))\ < 2K, or,

equivalent^, by (3.6), such that | W(p, k, &(xAr))| < 2K, for then XX is not

homogeneous by (2.2).

In X < tc (or even X < 2"), then any/» EXX will do. For then d(xX) < k (by

the Hewitt-Marczewski-Pondiczery Theorem), so the result follows from (3.4)

and (3.5(a)).

If X > tc, consider any p EXX which is constant (as a function from X to

X). Then W(p\a, tc, <&("X)) = W(p\n, tc, <&(KX)) for all a E X with |a| = tc,

hence

W(p, tc, <&(XX)) = W(p\K, tc, <&("*))

by (3.7). But the latter set has cardinality < 2", by the argument we just gave

for the case X < tc.

Cases (b) and (c). The argument is almost identical; one also should use

(3.3) and (3.5(c)).   D

4.2. Theorem. No power of ßQ — Q is homogeneous. More generally, if bQ

is a compactification of Q with \bQ\ > 2U, then no power of bQ — Q is

homogeneous.

Proof. First note that | ßQ \ = 22", [GJ, 9.3], so the second statement is

more general. Since no point of Q has a compact neighborhood, bQ — Q is

dense in bQ. Now tr( Y) = tr(X) whenever X is regular and Y is dense in X,

[J, 2.3]. It follows that tr(bQ - Q) = tr(bQ) = tr(Q) = co. Now apply (4.1).

D
That ßQ - Q is not homogeneous follows from Frolik's result that ßX -

X is not homogeneous if X is not pseudocompact, [F3]; see [vD,] and [vD2] for

totally different proofs. The results on powers of bQ — Q and on ßQ — Q are

new. We leave it to the reader to generalize (4.2).

4.3. Theorem. Let tc > co. Then no power of ß(n), ß(ii) - k or {/(tc) is

homogeneous.

Proof. Fix tc > co. We first note that /3(k) — k and U(k) can be mapped

continuously onto /?(tc). Indeed, there is a continous /: ß (tc) -» /?(tc) such that

|/~{a}| = tc for each a G tc. Then/maps î/(tc) Q /?(tc) - tc onto /?(tc).

Each of /?(tc), ß(K) - tc and U(k) has weight < w(/?(tc)) = 2" = 2,r(/î(,t)).
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So the theorem follows from (4.1(c)).   □

That U(u) = ß(u) — w is not homogeneous is due to Frolik, [F,]. That

U(k) and /j(k) — « are not homogeneous for k > to is an easy consequence of

Remarks 4 and 1 in Frolik's [F2].

4.4. Theorem. No power of ßR or of ßR — R is homogeneous.

Proof. \ßR\ = 22" [GJ, 9.3], but ir(ßR) = u since R is a dense open

subspace of ßR. Hence no power of ßR is homogeneous by (4.1), since

w(ßR) = 2U. We claim that ßR - R can be mapped continuously onto ßR, it

then follows from (4.1(c)) that no power of ßR — Ris homogeneous.

Let aR = R u {00} be the one-point compactification of R. Then the

subspace

S = {<x,y> E aR X ßR: x G R,y = x • sin x}

of aR X ßR is homeomorphic to R. But clearly S = S u {00} X ßR. It

follows that R has a compactification bR with bR - R homeomorphic to ßR.

There is a continuous map /: ßR —> bR with f(x) = x for x £ R; then

f^(ßR-R) = (bR-R)[GJ,6.\2].   Q
That ßR — R is not homogeneous follows from Frolik's result that ßX — X

is not homogeneous if A is not pseudocompact, [F3]; see [vD3] for a totally

different proof.

4.5. Remark. The condition that Y be Hausdorff in (4.1) is essential: Let ju

be any infinite cardinal. Define a space M as follows: the underlying set of M

is p X u, and U G M is open iff U D p X (a - n) for some n E w. Then A/

is a homogeneous T.-space, |Af| = p but tt(AÍ) = w.

One cannot replace w-weight by density in (4.1): (r)2 is homogeneous but

has density < k.

I do not know if the conditions on/are essential in (4.1(a)) and (4.1(b)).

(Easy examples show that the conditions on/are essential in (3.2) and (3.3).)

4.6. Remark. One should compare (1.1) with the fact that |A| < 2*(*)cmfor

every Hausdorff space A, where c(A) is the cellularity of A. (Argument:

\<&(X)\ < 2*wcw for every space A, and |*| < 2W*}| if X is Hausdorff.)

4.7. Remark. One can use (4.1(c)) to give an unusual proof of the fact that

ßX is not dyadic if X is not pseudocompact, [EP, Theorem 3]. (Recall that a

Hausdorff space Y is dyadic if it is the continuous image of ^2 for some ft,

and that then p can be taken to be w(Y), [S] or [EP, Theorem 1].) It suffices

to prove that ßR is not dyadic, by [EP, §2]. Indeed, {2U)2 is homogeneous, but

w(<2">2) = w(ßR) = 2" = 2**" = 2", and \ßR\ = 22" [GJ, 9.3].
4.8. Remark. The analogue of (4.2) for compactifications of w is not true.

Indeed, w has a compactification b(u) such that b(u) - to is homeomorphic to

the homogeneous space (2")2, by [E], since (2")2 is separable.

5. High powers. In (4.1) we proved that XX is not homogeneous for suitable

X by finding suitable k, 5 for which there are p, q with W(p, k, $) ¥=

W(q, k, 3). This required a cardinality argument. The following theorem is



190 E. K. VAN DOUWEN

remarkable since it shows that it is extremely easy to find such p and q if X is

sufficiently big; moreover our intuition recognizes p and q as being different.

Also,/? and q are more different than in (4.1): we will prove that W(p, tc, 5)

¥= W(q, tc, 5) by showing that they have different cardinality.

5.1. Theorem. Let X be a space which admits a continuous map f onto a

Hausdorff space Y with \Y\ > 2"{YX. Assume that one of the following holds:

(a) fis open or is a retraction, and d(X) < tr(Y);

(b) X is regular, f is perfect and d(X) < tr(Y);

(c) X is compact Hausdorff and w(X) < TT(Y\

Then there is a subset S of X with \S\ = \Y\ such that the following holds: if

X > 2w(Y), andp and q are any two points of XX such that p: X-* X is constant

and q: A—►A' takes on at least (2"(y))+ values which lie in S, then no

homeomorphism of XX onto itself maps p onto q.

As in (4.1) we only consider case (a). Denote tr(Y) by tc. There is by (3.1)

an S Ç X with |5| = |y|, and there is a 0 EK<ö(X) such that w(x, <#>) ^

w(y, c>) for any two distinct x,y E S.

Let X > 2w(y), and let/» and q be as stated. The proof of (4.1) shows that

W(p, tc, fT(AJf)) < 2". But w(q(a), <f>) G W(q, tc, <ö(xX)) for every a G A by

(3.2). Consequently | W(q, k, $(xX))\ > \S n <fk\ > 2*. Hence

W(p, k, $(XX)) * W(q, tc, $(XX)).       D

5.2. Remark. In case (a) it is sufficient to assume that/ ° q: X —> Y takes on

at least (2"m)+ values. However, in neither case it is sufficient that q: X —> X

takes on at least (2<r))+ values: consider the case that X = ßu X(2"}2,

Y= ßu.

5.3. Remark. (4.1) follows from (5.1) since a product of homogeneous

spaces is homogeneous.

6. Discussion and questions. Frolik considered the way discrete C*-embed-

ded co-sequences of one-point sets cluster at the points of a space, [F,], [F3].

The idea of using Tc-sequences of other than one-point sets, not necessarily for

tc = co, is due independently to Comfort and Negrepontis [CN, 16.18], and the

present author.

We did not impose any condition on the <f>'s, used in the definition of

W(x, k, 5) in §2, simply because there is no use for such conditions. Exam-

ples of additional conditions are

(1) {<b(a): a E tc} is pairwise disjoint, U {<i>(a): a G tc} is C*-embedded,

as Comfort and Negrepontis do for compact X, with á E 'ö(X), or the

weaker (since í E ^(X)) condition considered in (3.8);

(2) (Cl U {<K<*y o:Ea})n (Cl U (<Ka): a G tc - a}) = 0 for all a E k.
(That (2) suffices in [CN, 16.18] was also observed by Murray Bell, who used

this to prove that xU(u>) is not homogeneous for 1 < X < co. His question of

whether x£/(co) is not homogeneous for all cardinals X > 1 was the original

motivation for this paper.) It is important to realize however, that the only
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thing (2) does, is to perform what we called Task 1 (provided some <p satisfies

(2) and A is compact, of course). Indeed, the fact that we did not impose any

conditions on the d>'s was crucial for the discovery of (1.1).

There are several examples of nonhomogeneous spaces which have a

homogeneous power. The most famous example is perhaps the closed unit

interval /: "I is the Hubert cube which is known to be homogeneous, [K].

Another example is a(u>), the one-point compactification of to; indeed, "a(co)

is homeomorphic to "2. It is quite easy to give an example of a compact space

A no power of which is homogeneous: let A be the subspace [0, 1] U {2} of

R; then for any cardinal X > 1 not all components of XA have the same

cardinality. I am not aware of any example in the literature of a (compact)

zero-dimensional space no power of which is homogeneous. This paper

supplies several such spaces. A very natural example is a(x), the one-point

compactification of k, for any k > w. One can show that for all X > 1, some

but not all points x Gxa(n) have the following property:

There is an uncountable pairwise disjoint family % of clopen sets in \x(/c)

such that every neighborhood of x intersects all but finitely many members of

%. (In other words, disjoint co,-sequences of clopen sets in Ka(k) do not

cluster the same way at all points.)

The reason for the conditions d(A) < d( Y), or X is compact and w(A) <

2"(y) in (4.1) was that we had to perform what is called Task 2, in §3. It is not

known if they are essential. This leads to the following questions. A positive

answer would be very strong indeed.

6.1. Question. Is a compact Hausdorff space nonhomogeneous if it can be

mapped continuously onto ß(w), or onto /?(<c), or onto a Hausdorff space Y

with \Y\> 2"(y)?

6.2. Question. Is a (compact Hausdorff) space nonhomogeneous if some

open subspace can be mapped by an open mapping or a retraction onto ß (to),

or onto a Hausdorff space Y with \Y\ > 2"(y)?

The only thing I know is the following easy proposition (and some

modifications), which one can easily prove by considering as invariant family

the clopen sets.

6.3. Proposition. If a compact Hausdorff space X admits a continuous map f

onto ß(K) (or U(k)), with the property that f\y) is connected for each

y G ß(n) (or y G U(k)), then X is not homogeneous. (In fact, no power would

be homogeneous.)

Theorem 1.1 suggests the possibility there are more relations between

cardinal functions on homogeneous (compact) (Hausdorff) spaces, which

are not true without the assumption of homogeneity. I am not aware of any

other such relation. It would certainly be worthwhile to further investigate

this.
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