DOUBLE COMMUTANTS OF C_{-0} **CONTRACTIONS**

MITSURU UCHIYAMA

ABSTRACT. D. Sarason has shown that an operator in the double commutant of a contraction T of class $C_0(1)$ is interpolated by a function in H^{∞} , that is, $\{T\}' = \{\phi(T); \phi \in H^{\infty}\}$, [3]. Generally, in [4] Sz.-Nagy and C. Foias have shown that an operator in the double commutant of a contraction T of class $C_0(n)$ is interpolated by a function in N_T , that is, $\{T\}'' = \{\phi_1(T)^{-1}\phi_2(T): \phi_2/\phi_1 \in N_T\}$. In this note we shall show that an operator in the double commutant of a C_0 contraction T with finite defect indices $\delta_{T^{\infty}} > \delta_T$ is interpolated by a function in H^{∞} .

1. Introduction. We begin by recalling notations of [6]. If T is a contraction on a separable Hilbert space H such that $T^{*n} \to 0$ (strongly) as $n \to \infty$, then T is said to be of class $C_{\cdot 0}$. If T and T^* are of class $C_{\cdot 0}$, then T is said to be of class C_{00} . For a contraction T, $\delta_T = \operatorname{rank}(1 - T^*T)$ and $\delta_{T^*} = \operatorname{rank}(1 - TT^*)$ are called defect indices of T. If T is of class C_{00} and $\delta_T = \delta_{T^*} = n < \infty$, then T is said to be of class $C_0(n)$. If T is of class $C_{\cdot 0}$ and $\delta_T = \delta_{T^*} = n < \infty$, then T is of class $C_0(n)$.

Let Θ be an $n \times m$ matrix over the Hardy space H^{∞} of bounded measurable functions on the unit circle with vanishing Fourier coefficients of negative indices. Such a matrix is called *inner* if $\Theta^*(\lambda)\Theta(\lambda) = 1_m$ a.e. on the unit circle. In this case it necessarily follows that $n \ge m$. For T of class $C_{\cdot 0}$ with finite defect indices $\delta_{T^*} = n$ and $\delta_T = m$, there exists an $n \times m$ inner function Θ such that T is unitarily equivalent to $S(\Theta)$ on $H(\Theta)$, which are defined by next relations:

$$H(\Theta) = H_n^2 \ominus \Theta H_m^2$$

and

$$S(\Theta)h = P_{\Theta}SH$$
 for h in $H(\Theta)$,

where H_n^2 is the Hardy space of *n*-dimensional column vector valued functions on the unit circle, P_{Θ} is the orthogonal projection of H_n^2 onto $H(\Theta)$, and $(Sh)(\lambda) = \lambda h(\lambda)$.

An $n \times m$ $(n \ge m)$ normal inner matrix N' over H^{∞} is, by definition, of the form:

Received by the editors September 14, 1976 and, in revised form, December 28, 1976 and April 25, 1977.

AMS (MOS) subject classifications (1970). Primary 47A45.

Key words and phrases. C₀ contraction, double commutant, inner matrix, lifting theorem.

$$N' = \begin{bmatrix} v_1 & 0 & \cdots & 0 \\ 0 & v_2 & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & v_m \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix} \} n - m$$
 (1)

where for each i, v_i is a scalar inner function and a divisor of its successor.

Let Θ be an $n \times m$ ($\infty > n > m$) inner matrix over H^{∞} and N a "corresponding" normal matrix i.e., N is an $n \times m$ normal inner matrix of the form (1), where each entry ν_i is the invariant factor of Θ , that is,

$$v_i = \frac{d_i}{d_{i-1}}$$
 for $i = 1, 2, ..., m$,

where $d_0 = 1$ and d_i is the largest common inner divisor of the minors of order *i*. Then Nordgren [2] has shown that there exist $n \times n$ matrices Δ , Δ_k and $m \times m$ matrices Λ , Λ_k (k = 1, 2) satisfying

$$\Delta\Theta = N\Lambda, \qquad \Delta_k N = \Theta\Lambda_k,$$

$$(\det \Delta)(\det \Lambda) \wedge d_m = 1, \qquad (\det \Delta_k)(\det \Lambda_k) \wedge d_m = 1,$$

$$(\det \Delta_1) \wedge (\det \Delta_2) = 1, \qquad (2)$$

where $x \wedge y$ denotes the largest common inner divisor of the scalar functions x and y in H^{∞} . Setting $X = P_N \Delta | H(\Theta)$ and $Y_k = P_{\Theta} \Delta_k | H(N)$, one obtains one-to-one operators X, Y_1 and Y_2 such that

$$XS(\Theta) = S(N)X, \quad Y_kS(N) = S(\Theta)Y_k \text{ and } (3)$$

$$Y_1H(N) \vee Y_2H(N) = H(\Theta), \tag{4}$$

where $L_1 \vee L_2$ denotes the minimum subspace including both L_1 and L_2 (see [5]).

For a completely nonunitary contraction T, it is possible to define $\phi(T)$ for every function ϕ in H^{∞} . In particular, for $S(\Theta)$ given above, $\phi(S(\Theta))$ can be equivalently defined by the following:

$$\phi(S(\Theta))h = P_{\Theta}\phi h$$
 for h in $H(\Theta)$ (see [3], [6]).

The purpose of this note is to prove

Theorem. Let Θ be an $n \times m$ inner matrix over H^{∞} (n > m). Then

$$\{S(\Theta)\}'' = \{\phi(S(\Theta)): \phi \in H^{\infty}\}.$$

2. Proof of the theorem. The following lemma is well known and called the *lifting theorem*.

LEMMA 1 ([3], [6]). Let Θ be an $n \times m$ inner matrix over H^{∞} . Then for an operator T commuting with $S(\Theta)$ there is an $n \times n$ matrix Ψ over H^{∞} such that

$$\Psi\Theta H_m^2 \subseteq \Theta H_m^2$$
 and $T = P_{\Theta}\Psi | H(\Theta)$.

The following lemma is analogous to Lemma 1 of [7] and the proof is simple. Thus we omit it.

LEMMA 2. Let N' be an $n \times m$ normal inner matrix of the form (1). In order that an $n \times n$ matrix $\Psi = (\psi_{ij})$ over H^{∞} satisfies $\Psi N' H_m^2 \subseteq N' H_m^2$, it is necessary and sufficient that

- (i) v_i/v_i is a divisor of ψ_{ii} for $1 \le j < i \le m$,
- (ii) $\psi_{ij} = 0$ for $m + 1 \le i \le n$ and $1 \le j \le m$.

LEMMA 3. If T belongs to $\{S(\Theta)\}''$, then there exist ϕ_1 and ϕ_2 in H^{∞} such that

$$\phi_2(S(\Theta)) = \phi_1(S(\Theta))T \quad and \quad \phi_1 \wedge d_m = 1. \tag{5}$$

PROOF. Let N be an $n \times m$ normal inner matrix of the form (1) corresponding to Θ . Let us consider X, Y_1 and Y_2 defined above. Then we have

$$Y_k AX \in \{S(\Theta)\}'$$
 for every $A \in \{S(N)\}'$,

and hence $(Y_k AX)T = T(Y_k AX)$ (k = 1, 2). Thus, on setting $B_k = XY_k$ and $C_k = XTY_k$, one obtains

$$B_k A C_k = C_k A B_k \qquad (k = 1, 2).$$
 (6)

By Lemma 1, $T \in \{S(\Theta)\}'$ and $A \in \{S(N)\}'$ imply that there are $n \times n$ matrices Γ and Ψ such that

$$\Gamma\Theta H_m^2 \subseteq \Theta H_m^2, \qquad T = P_{\Theta}\Gamma | H(\Theta),$$

 $\Psi N H_m^2 \subseteq N H_m^2 \quad \text{and} \quad A = P_N \Psi | H(N).$

Then it is obvious that $B_k = P_N \Delta \Delta'_k | H(N)$ and $C_k = P_N \Delta \Gamma \Delta'_k | H(N)$. Now let ψ_{ij} , b^k_{ij} and c^k_{ij} be the (i, j)th entry of Ψ , $\Delta \Delta_k$ and $\Delta \Gamma \Delta_k$, respectively. Since (6) implies that

$$\{(\Delta\Delta_k)\Psi(\Delta\Gamma\Delta_k) - (\Delta\Gamma\Delta_k)\Psi(\Delta\Delta_k)\}H_n^2 \subseteq NH_m^2,$$

it follows that for $1 \le i, j \le n$

$$\sum_{h,l=1}^{n} \left\{ b_{ih}^{k} \psi_{hl} c_{ij}^{k} - c_{ih}^{k} \psi_{hl} b_{ij}^{k} \right\} \in \nu_{i} H^{\infty}, \tag{7}$$

where $\nu_{m+1} \equiv \cdots \equiv \nu_n \equiv 0$.

Set $\psi_{ij} = 1$ for (i, j) = (1, n) and $\psi_{ij} = 0$ for $(i, j) \neq (1, n)$. Then, since ψ_{ij} $(1 \le i, j \le n)$ satisfy the conditions (i) and (ii), by (7) we have

$$b_{i1}^k c_{ni}^k - c_{i1}^k b_{ni}^k \in \nu_i H^{\infty}$$
 for $1 \le i, j \le n$.

Similarly we can deduce that

$$b_{ir}^{k}c_{ni}^{k} - c_{ir}^{k}b_{ni}^{k} \in \nu_{i}H^{\infty} \quad \text{for } 1 \leq i, j, r \leq n.$$
 (8)

Thus it is clear that $(c_{nj}^k \Delta \Delta_k - b_{nj}^k \Delta \Gamma \Delta_k) H_n^2 \subseteq NH_m^2$, which implies that

$$c_{nj}^{k}(S(N))B_{k} - b_{nj}^{k}(S(N))C_{k} = 0.$$
 (9)

From (3) and (9) it follows that

$$Xc_{nj}^{k}(S(\Theta))Y_{k} = XY_{k}c_{nj}^{k}(S(N)) = B_{k}c_{nj}^{k}(S(N))$$

= $b_{ni}^{k}(S(N))C_{k} = b_{ni}^{k}(S(N))XTY_{k} = Xb_{ni}^{k}(S(\Theta))TY_{k}.$

Since X is one-to-one, we have

$$c_{ni}^{k}(S(\Theta))Y_{k} = b_{ni}^{k}(S(\Theta))TY_{k}.$$
 (10)

(Remark. The above method is analogous to that in [1] or [4].) Let \tilde{b}_{ij}^k be the (i, j)th cofactor of $\Delta\Delta_k$. Then from (10) it follows that

$$\left(\sum_{j=1}^{n} \tilde{b}_{nj}^{k} c_{nj}^{k}\right) (S(\Theta)) Y_{k} = (\det \Delta \Delta_{k}) (S(\Theta)) T Y_{k}.$$
 (11)

Let δ_{ij} , δ_{ij}^k and γ_{ij} be the (i, j)th entries of Δ , Δ_k and Γ , respectively. Then since

$$b_{ij}^k = \sum_{l=1}^n \delta_{il} \delta_{lj}^k$$
 and $c_{nj}^k = \sum_{l=1}^n \delta_{nh} \gamma_{hl} \delta_{lj}^k$,

we have

$$\begin{bmatrix} b_{11}^k & \dots & b_{1n}^k \\ \vdots & & \vdots \\ b_{n-11}^k & \dots & b_{n-1n}^k \\ c_{n1}^k & \dots & c_{nn}^k \end{bmatrix} = \Pi \Delta_k, \text{ where } \Pi = \begin{bmatrix} \delta_{11} & \dots & \delta_{1n} \\ \vdots & & \vdots \\ \delta_{n-11} & \dots & \delta_{n-1n} \\ \sum_h \delta_{nh} \gamma_{h1} & \dots & \sum_h \delta_{nh} \gamma_{hn} \end{bmatrix}.$$

Thus from (11) it follows that

$$(\det \Delta_k)(S(\Theta)) \cdot (\det \Pi)(S(\Theta))Y_k = (\det \Delta_k)(S(\Theta)) \cdot (\det \Delta)(S(\Theta))TY_k.$$

The second equation of (2) implies that $(\det \Delta_k)(S(\Theta))$ is one-to-one (see [8]). Hence it follows that

$$(\det \Pi)(S(\Theta))Y_{k} = (\det \Delta)(S(\Theta))TY_{k}.$$

From this and (4) it is clear that

$$(\det \Pi)(S(\Theta)) = (\det \Delta)(S(\Theta))T.$$

Consequently, if $\phi_1 = \det \Delta$ and $\phi_2 = \det \Pi$, then this and the first equation of (2) imply that Lemma 3 is true.

PROOF OF THEOREM. $\phi_2(S(\Theta)) = \phi_1(S(\Theta))T$ implies that there exists an $m \times n$ matrix $\Omega = (\omega_{ij})$ over H^{∞} such that $\phi_2 - \phi_1\Gamma = \Theta\Omega$. Setting θ_{ij} the (i,j)th entry of Θ , we have

$$-\phi_1 \gamma_{ij} = \sum_{k=1}^m \theta_{ik} \omega_{kj} \quad \text{for } i \neq j$$
 (12)

and

$$\phi_2 - \phi_1 \gamma_{ii} = \sum_{k=1}^m \theta_{ik} \omega_{ki}$$
 for $i = 1, 2, ..., n$. (13)

From (5), there is no loss of generality in assuming $\phi_1 \wedge \phi_2 = 1$. Then for every minor ξ_{α} of Θ with order m, it follows that the inner factor of ϕ_1 is a divisor of ξ_{α} . In fact, if $\xi_{\alpha} \equiv 0$, then it is obvious. Thus assume $\xi_{\alpha} \not\equiv 0$ and $\xi_{\alpha} = \det \Theta_{\alpha}$, where

$$\Theta_{\alpha} = \begin{bmatrix} \theta_{\alpha(1)1} & , \dots, & \theta_{\alpha(1)m} \\ \vdots & & \vdots \\ \theta_{\alpha(m)1} & , \dots, & \theta_{\alpha(m)m} \end{bmatrix} \quad \text{for } 1 \leq \alpha(1) < \dots < \alpha(m) \leq n.$$

Then n > m implies that there is an l such that $1 \le l \le n$ and $l \ne \alpha(k)$ for $k = 1, 2, \ldots, m$. From (12) it follows that

$$-\phi_{1}\begin{bmatrix} \gamma_{\alpha(1)l} \\ \vdots \\ \gamma_{\alpha(m)l} \end{bmatrix} = \Theta_{\alpha}\begin{bmatrix} \omega_{1l} \\ \vdots \\ \omega_{ml} \end{bmatrix}.$$

Now, since det $\Theta_{\alpha} = \xi_{\alpha} \neq 0$, there exists an $m \times m$ matrix Θ'_{α} over H^{∞} such that $\Theta_{\alpha}\Theta'_{\alpha} = \Theta'_{\alpha}\Theta_{\alpha} = \det \Theta_{\alpha} = \xi_{\alpha}$. Thus it is clear that

$$-\phi_1\Theta'_{\alpha}\begin{bmatrix} \gamma_{\alpha(1)l} \\ \vdots \\ \gamma_{\alpha(m)l} \end{bmatrix} = \xi_{\alpha}\begin{bmatrix} \omega_{1l} \\ \vdots \\ \omega_{ml} \end{bmatrix},$$

which implies that ϕ_1 is a divisor of $\xi_{\alpha}\omega_{il}$ for $i=1,2,\ldots,m$. Hence, by (13), ϕ_1 is a divisor of

$$\xi_{\alpha}(\theta_{l1}\omega_{1l}+\theta_{l2}\omega_{2l}+\cdots+\theta_{lm}\omega_{ml})=\xi_{\alpha}(\phi_{2}-\phi_{1}\gamma_{ll}).$$

From $\phi_1 \wedge \phi_2 = 1$, this implies that the inner factor of ϕ_1 is a divisor of ξ_{α} . Thus it is a divisor of $\bigwedge_{\alpha} \xi_{\alpha} = d_m$; this, from $\phi_1 \wedge d_m = 1$, yields that the inner factor of $\phi_1 = 1$ i.e., ϕ_1 is outer. Since ϕ_1 is a divisor of $\xi_{\alpha} \phi_2$, there exist ζ_{α} in H^{∞} such that $\phi_1 \zeta_{\alpha} = \xi_{\alpha} \phi_2$. Since Θ is inner $\sum_{\alpha} |\xi_{\alpha}|^2 = 1$ a.e. on the unit circle [5]. Thus,

$$|\phi_2| = |\phi_1| \left(\sum |\zeta_{\alpha}|^2\right)^{1/2} \leq |\phi_1| \left(\sum \|\zeta_{\alpha}\|_{\infty}\right) \text{ a.e.}$$

implies that there exists a ϕ in H^{∞} such that $\phi_1 \phi = \phi_2$.

Thus we have $\phi_1(\phi - \Gamma) = \Theta\Omega$, which implies that

$$\phi_1(S(\Theta))\{\phi(S(\Theta))-T\}=0$$

and hence $T = \phi(S(\Theta))$. Thus we complete the proof of Theorem.

REFERENCES

- 1. H. Bercovici, C. Foiaş and B. Sz.-Nagy, Complements à l'étude des opérateurs de class C₀. III, Acta Sci. Math. 37 (1975), 313-322.
- 2. E. A. Nordgren, On quasi-equivalence of matrices over H^{∞} , Acta Sci. Math. 34 (1973), 301-310.
 - 3. D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179–203.
- 4. B. Sz.-Nagy and C. Foias, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math. 31 (1970), 91-115.

Jordan model for contractions of class C_{.0}. Acta Sci. Math. 36 (1974), 305-322.
 Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó, Budapest, 1970.
 M. Uchiyama, Hyperinoariant subspaces for operators of class C₀(N), Acta Sci. Math. 39 (1977), 179-184.
 Hyperinoariant subspaces for contractions of class C_{.0}. Hokkaido Math. J. 6 (1977),

DEPARTMENT OF MATHEMATICS, FUKUOKA UNIVERSITY OF EDUCATION, MUNAKATA, FUKUOKA, 811-41 JAPAN