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A THEOREM ON C*-EMBEDDING

F. k. dashjell, jr.

Abstract. Theorem. In a totally nonmeager and regular space, every

countable intersection of open, normal, C*-embedded subsets is normal and

C*-embedded.

A subspace G of a topological space S is called C*-embedded if every

bounded continuous /: G -» R extends continuously to S. This note gives a

short and elementary proof of the theorem in the abstract. This extends a

result of E. Aron ([1], otherwise unpublished) which asserts that in a compact

space, every countable intersection of dense, C*-embedded, open Fa subsets is

C*-embedded. The original proof in [1] is rather long and nonelementary.

The interest of this theorem and its relevance to certain problems in rings of

continuous functions are discussed in [4, §6], [5], and [6, §5.8].

A space is called totally nonmeager (see [2, p. 252]) if every closed subspace

is second category (i.e., nonmeager) relative to itself.
Proof of the Theorem. Suppose S is a totally nonmeager, regular space

and G,, G2, . . . are open, normal, C*-embedded subsets. It suffices to prove

disjoint closures in S (for then, since G, is normal and Z, n Z2 n G, = 0, G

would be normal and C*-embedded in G, [3, Theorem 1.17]). Put

K - z, n z2.

Clearly G n K = 0. Suppose (toward a contradiction) that K =£ 0._Fix «,

pick any closed neighborhood F of a point in K, and set A¡ = G„ n Z, n F,

i = 1, 2. Then

0^zxn Fnz2n feTxda¡,

so the relatively closed subsets Ax, A2 of the normal, C*-embedded set G„ do

not have disjoint closures. Thus

<Z> + Ax n A2= G„ n K n F.

Since F was arbitrary and K is regular, G„ n K is a dense relatively open

subset of the nonmeager space A' (for all «). Thus 0 ^ D"=i(G„ n K) =

G n K, a contradiction.
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