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GENERALIZATIONS OF TEMPLE'S INEQUALITY

EVANS M. HARRELL II

Abstract. T. Kato's little-known generalization of a classic variational

inequality for eigenvalues is extended to the case of normal operators and

briefly discussed.

It is usually not possible to evaluate precisely the eigenvalues of the linear

operators which occur in realistic models in the physical sciences. It is thus a

problem of great practical importance to have formulae for approximate

evaluation of eigenvalues and for the errors of those approximations. The

most important approximate formula for an eigenvalue is the Rayleigh-Ritz

inequality, which gives an upper bound for the lowest eigenvalue of a

selfadjoint operator. This is the prototype of a variational estimate, whereby a

set of approximate eigenfunctions is guessed at and used to estimate the

eigenvalues. The problem of obtaining lower bounds for the lowest eigenvalue

of a selfadjoint operator is notoriously more difficult than the discovery of

upper bounds, but some methods are widely known, though not so widely as

the Rayleigh-Ritz inequality. The best such bound which relies only on the

selfadjointness of the operator and the isolation of the lowest eigenvalue from

the rest of the spectrum is due to G. Temple [7 Theorem 1].

The proofs of the Rayleigh-Ritz inequality and Temple's inequality show

them to be straightforward applications of the spectral theorem [5], [6], and

similar arguments can extend these inequalities to give useful estimates for

any isolated eigenvalue of a selfadjoint operator-without the necessity of first

estimating all the lower eigenvalues, as with the min-max principle. It is

peculiar and unfortunate that more than two decades elapsed between

Temple's original paper and the discovery of the generalization of Temple's

inequality to arbitrary eigenvalues, and that this generalization has remained

but little known for almost three more decades. In this paper Temple's

inequality is generalized still further to the case of normal operators. Its use is

not only for numerical computation, but also for the proofs of many abstract

theorems about perturbation expansions and convergence of operator-valued

functions [1], [2], [4], [5].

The classical result is
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Theorem 1 (G. Temple). Let A be a self adjoint operator on a Hubert space

with inner product (•,•), linear in the second position and conjugate-linear in the

first. Suppose A has a lowest eigenvalue E0 isolated from the rest of the

spectrum, and define

ß=inf[sp(A)\{E0}].

Let yp be a trial function for A, that is, a normalized vector in the domain of A,

such that (yp, Axb) < ß. Then

E0 > (yp, Ayp) -[\\AP\\2 - (yp, ̂ )2]/[ ß - (>, A*})].

This inequality is naturally coupled with the Rayleigh-Ritz inequality, viz.,

E0 < (yp, Ayp).

Remark. In practice, inf[sp(^)\ {.En}] mav not be known, and so it is

common to see this theorem stated for ß any number less than or equal to

inf[sp(/l) \ {E0}], but greater than E0. A lower ß gives a weaker inequality.

T. Kato [3] found a generalization of Temple's inequality for arbitrary

eigenvalues, which has the additional virtue of being symmetric in upper and

lower bounds. The proof of the following version of that theorem emphasizes

the geometrical idea which is also the key to the generalization.

Theorem 2 (T. Kato). Let A be a selfadjoint operator on a Hilbert space,

and let yp be a trial function for A. Define

j]=(yp,Ayp)    and   e =\\[A - T/]t//||.

(Hence e2 = \\Ayp\\2-V2.)If

(1) e2<(ß-r1)(r1-a)

for real numbers a < ß, then sp(A) n (a, ß) ¥= 0 (empty set). Moreover, if

the only point of the spectrum in the interval (a, ß) is an eigenvalue E, then

(2) Tï-c2/[/5-Tï]<£<n + e2/[îi-a].

Proof. Suppose to the contrary that sp(/l) n (a, ß) = 0. Then if v E

sp(A), \v - [ß + a]/2\ > [ß - a]/2. (This is just the statement that the

distance from v to the center of the interval is at least as great as half the

width of the interval.)

(3) v2 - t}2 >[ß + a]v - aß - ty2.

By the spectral theorem, there is a normalized measure ju^, associated with yp

so that Jsp(Af dH(v) = (yp, Ayp) and fsp(Af2 dh(v) = (Ayp, Ayp) - \\Ayp\\2. If
(3) is integrated by this measure, then

ll^ll2- V2 > iß + «h - «ß - r,2 = (ß - *)(!, - a),
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contradicting (1). Thus sp(A) n (a, ß) ¥= 0.

(2) follows by noting that (1) still holds when either a is increased to any

value less than tj - e2/[ ß — tj], or ß is decreased to any value greater than

tj + c2/[tj — a].

Remark. The Rayleigh-Ritz inequality and Temple's inequality are corol-

laries of Theorem 2, with a = oo and ß = inf[sp(/l) \ {E0}].

Since the spectral theorem holds for all normal operators, Theorem 2 can

be generalized by exploiting the same geometrical idea in the complex plane.

The most important cases are treated in the following theorem.

Theorem 3. Let A be a normal operator on a Hubert space, and let x\> be a

trial function for A. Define tj and e as before, and define

C(y,d) = {zEC:\z-y\<d),

the open disc of radius d around the complex point y.

A. Suppose that tj & sp(A). Then for any line in C containing tj, either (i) that

line contains at least two points of the spectrum of A, one on each side of tj, or

(ii) each open half-plane divided by the line contains part of the spectrum.

B.If

(4) e2 < d2 - |rj - y|2,

thensp(A) n C(y,d) =£ 0.

C. // it is known that there is only one point, E, of the spectrum in C (y, d),

and e < I = d — |tj — y| (which is the distance from tj to the edge of C(y, d)),

then

(5) \E - tj| < t2/l,

that is, E is contained in the closed disc, C(tj, e2//).

D. Suppose that an isolated point E is known to be the only point of sp(A)

outside some sector in the complex plane, of arbitrary vertex, orientation, and

opening angle < tr, and that tj is also outside that sector. Some larger sector

with vertex tj, which we denote by {z: a, < arg(z — tj) < a2), where a, < a2

< a, + 2tt, must also contain sp(A) \{E). Then

(6) £ E (z: a, + 77 < arg(z - tj) < a2 + it),

and

(7) \E-r,\< e2/!',

where T is (less than or) equal to the distance from tj to the original sector

containing sp(A)\ [E).

E. If A is unitary, and for some ßx < ß2 < ßx + 2tt,
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(8) |tj| cos(( ßx + ß2 )/2 - arg(r,)) > cos(( ß2 - ßx )/2),

then sp(/l) n {z = eie: ßx < 9 < ß2) i- 0. If it is known that there is exactly

one point, E, ofspiA) in the open arc {z = em: ßx < 9 < ß2), then

(l-|n|2)sin(^2-arg(î,))
arg(r/) - tan"

2|tj| - (|tj|2 + l)cos(,32-arg(T,))
arg(£)

< arg(n)tan  '
(1 - |T)2|)sin(arg(T,) - ßx )

2|n| - (|n|2 + l^osiargi-ri) - ßx)

Remarks. Parts C, D, and E of this theorem all give bounds E = tj +

Oie2), as does Theorem 2. Parts C and D are not the strongest possible

conclusions under these hypotheses; part C gives the smallest disc that must

contain E, and part D gives the smallest circular sector that must contain E.

More precise estimates are obtainable using figures contained in, and osculat-

ing, this disc and this circular sector. In general, if more is known about the

position of sp(/l), more precise estimates can be obtained.

Part D,(6), taken by itself, is the natural generalization of the Rayleigh-Ritz

inequality for normal operators, as it says that the isolated eigenvalue is on

the far side of the variational estimate, tj, from the rest of the spectrum.

The reason that e does not appear in part E is that e is uniquely determined

by tj, when A is unitary; \\Ayp\\2 = \\yp\\2 = 1, so

£2=||^||2-|(^,^)|2=1-|T,|2.

Proof. A. The spectral theorem implies that tj is in the convex hull of

sp(yl), which immediately gives part A.

B. Assume to the contrary that spiA) n C(y, d) = 0. Then if v E spiA),

\v — y| > d, and so by simple algebra,

|îv|2-|t}|2> d2 + y¿+y> -|y|2-|T||2.

If this is integrated by the spectral measure associated with yp, there results

II^I|2-|TJ|2>¿2 1

which contradicts (4). Thus spiA) n C(y, d) i= 0.

C. For the estimate (5), note that E must be in the intersection of all discs

C(y', d') where e2 < d'2 - |tj - y'|2, and a fortiori in the intersection of all

discs where d' = 1/2 + e2/2/, and |y' - tj| < 1/2 - e2/2l. (These are opti-

mal conditions on C(y', d') with d' independent of y', subject to the

restriction that C(y', d') c C(y, d). A typical C(y', d') is shown in Figure 1.)

The intersection of all such discs is a closed disc centered on tj, with radius

1/2 + £2/2/ - il/2 - e2/2l) = e2/l, i.e., E E C(tj, i2/l).
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Figure 1. Geometry of the proof of Theorem 3C.

The point z cannot be the eigenvalue unless it is contained in all discs

C(y', d'), where e2 < d'2 — \y' — r/|2; and,in particular,in the disc where y'

and d' are chosen so that the near edge of C(y', d') is as far as possible

from z, but with C(y', d') c C(y, d).

D. (6) is a consequence of part A. Denote by P the point of the original

sector containing sp(A) \ {£} nearest to tj. Then choose y to be collinear with

tj and P, and on the far side of tj from P, so that |tj — y| > (e2//' - T)/2,

and choose d = |tj — y| + /'. The disc C(y, d) does not intersect the original

sector, and e2 < d2 - |tj - y|2. Therefore by part B, E E C(y, d) c C(rj, r),

for some r > e2/T. If |tj - y| is decreased to (e2/T — T)/2, r can be taken

arbitrarily close to e2//', giving (7).

E. The first claim of part E is also a consequence of part A, because (8) is

equivalent to the statement that tj is on the same side of the chord from e'ß'

to eißl as the arc {z = e'9: ßx < 9 < ß2). (Recall that the spectrum of a

unitary operator is contained in the unit circle in the complex plane.)

As in Theorem 2, the best bounds on E are obtained by alternatively

increasing ßx and decreasing ß2 as much as possible subject to the restriction

(8). This amounts to finding the sector (6) of part D, and seeing what arc it

subtends. A schoolchild's exercise in geometry, using the law of sines, shows

that the chord containing tj and intercepting the unit circle a radians in one

direction from the point tj/|tj|, also intercepts the unit circle at

tan-'((l - |Tj|2)sin(a)/[2|r,| - (|tj|2 + l)cos(o)])

radians in the other direction from tj/|tj|, which gives (9).

At least two improvements on this theorem could be made: to treat the

case where there are n isolated eigenvalues in some region, as was done in the

selfadjoint case in [3]; and to get inequivalent variational bounds on the

eigenvalues by applying these theorems tof(A), for various functions/. (The
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functions most likely to be known are the polynomials of A, the inverse and

resolvent of A, and e~'A and e"A.) As these are straightforward, and are best

tailored to the specific problems they may be used in, I shall leave them to be

calculated as they are needed.

A useful companion for Theorem 3, which may be of great antiquity, at

least for the selfadjoint case, is the following estimate of the accuracv r»f the

trial function.

Lemma 4. Let E be an eigenvalue of a normal operator A, such that E is

isolated from the rest of the spectrum by a distance d > 0. Let yp be a trial

function for A satisfying \\[A — E]yp\\ < d' < d. Let P be the orthogonal

projection onto the eigenspace of E. Then

1 >iyp,Pyp)=\\Pypf> 1 - id'/df.
Proof. A - E = [A - E][l - P]. Therefore

d> >\[A - E\*\-\\A - E][l - P]yp\\> d\\[l - P]yp\\.

Squaring, and using ||[1 - P]yp\\2 = 1 - \\Pyp\\2, one finds

||¿V||2> 1 -id'/df.

The other inequality is trivial.
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