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AN IMPROVEMENT THEOREM FOR DESCARTES SYSTEMS

PHILIP W. SMITH1

Abstract. An improvement (or comparison) theorem is proved for certain

linear combinations of functions from a Descartes system. This theorem can

then be applied to prove a conjecture of Lorentz, as well as more general

results.

1. Introduction. The results in this paper were motivated by a problem

posed by G. G. Lorentz. Lorentz was interested in minimizing H-x^ —

2*=I ajX^W where the A, are integers, 0 < A, < N, the a¡ are real numbers,

k < N, and || • || is the supremum norm on [0, 1]. It was conjectured by

Lorentz that for given integers k and N the set of exponents X¡ which

produced the smallest error is X¡ = N — i, i = I, . . ., k. This was proved in

[1] by noting that the kernel K(x, y) = xy is extended totally positive (ETP)

on (0, co) X (—co, oo).

Subsequently, A. Pinkus [5] observed that this result is valid when || • || is

any Lp norm, 1 < p < co. His proof relied on the fact that (x'}f=0 is a

Descartes system on (0, 1).

These results are very striking since one might not expect the same set of

exponents to produce the smallest error in all the Lp norms. The purpose of

this paper is to expose the basic property of Descartes systems from which

these and more general results flow, namely

Theorem 1. Let {w,}f=1 C C(c, d) be a Descartes system on (c, d). Let an

integer k < N — 2 be given along with integers N > X¡ > y¡ > I for i =

1, . . . , k. Suppose that c < xx < ■ ■ ■ < xk < d,

k k

P = uN + 2 ß/«v       a = un + 2  b¡uyi,
i=i í=i

and

0 " P(xd = ?(*,■)>       i = 1, . . . ,k.

Then \p(x)\ < \q(x)\ for all x G (c, d), with strict inequality if x ^ x„ / =

I, . . . , k, provided that p ¥= q.

This theorem is reminiscent of the "improvement" theorems of Karlin [3].
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§2 contains the relevant definitions, a preliminary lemma, and the proof of

Theorem 1. In addition, we state an extension of Theorem 1. §3 relates

Theorem 1 and its extension to certain approximation results.

2. Proof of Theorem 1 and extensions. We begin with some necessary

definitions and notations. A set of functions {w,}f=1 C C(c, d) will be called

a Descartes system on (c, d) [2, pp. 25-27] provided there is an ek = ±1 so

that

0 < ek det

«A,(M       «A2('l) •   •   • M'l)

«*,('*)     «a2('*)      • • •       "*»('*)

(2.1)

whenever 1 < A, < • • • < Xk < N, c < tx < ■ ■ • < tk < d, and 1 < k <

N.

The next lemma can be easily verified via Cramer's rule.

Lemma. Let {«,}f=1 be a Descartes system on (c, d), 2 < m < N, integers

1 < A, < • • ■ < Am < N, and c < xx < ■ ■ ■ < xm_, < d be given. Suppose

that p = 2JL] ¿2,"v is not zero but p(x¡) = Ofar i = 1, . . . , m — 1. Then

(i)p(x) = 0 only if x = x¡, 1 < / < m — 1.

(ii)/? changes sign at each x¡.

(iii) a,a,+1 < Ofar i = 1, . . . , m - 1.

(iv) amp(x)emtm_x > Ofar xm_x < x < d.

This lemma is the key to proving Theorem 1. It provides the necessary

information concerning the "orientation" of elements in the span of a

Descartes system which vanish maximally.

We now proceed to prove Theorem 1. It is clear that we need only consider

p and ¿7 of the form

k k

P = "n + S  ö,"a, + aux,       q = uN + 2  btuK + buy
1=1 i=i

where 1 < A, < • • • < A,_, < y < A < Ay+1 < • • • <Xk < N, since the

general result may be inferred from this case by making a finite number of

pairwise comparisons.

With/? and ¿7 as above the proof proceeds by showing that/? and ¿7 have the

same "orientation" (i.e. sign structure) but that p — q has opposite

"orientation". This will complete the proof. By hypothesis p and ¿7 have zeros

at xx, .. . , xk and hence part (iv) of the Lemma implies that

¿>(*K + i€*>0   and   <7(*K+i^>0 (2.2)

for xk < x < d. Furthermore,
k

P - 9=2 c¡u\ + au\ - buy
, = 1



28 P. W. SMITH

has k + 1 terms and also vanishes maximally at xx, . . ., xk. Thus, the

coefficient of the leading term forp — q (i.e. ck if/ ^ k) is negative by part

(iii) of the Lemma (since p and p — q have the same coefficient for ux). By

part (iv) of the Lemma we have

(P - tf)(*K+i^ < 0.       xk< x <d. (2.3)

Combining (2.2) and (2.3) we have, for xk < x < d

0<p(x)<q(x)    ife^.e, >0

or

0>p(x)>q(x)    ife^i«* < 0.

In any case we see that \p(x)\ < \q(x)\ for xk < x < d.

Using part (ii) of the Lemma we note that/?, q, and/7 - q all change sign at

xk and hence for xk_x < x < xk we have \p(x)\ < \q(x)\. Applying this

argument repeatedly completes the proof of Theorem 1.

Theorem 1 may be generalized as follows:

Theorem 2. Let {u¡}N=x c C(a, b) be a Descartes system on (a, b). Let

nonnegative integers k, I, m, and a be given satisfying I + m = k, 1 < a — /,

and a + m < N. Suppose that a < xx < • • - < xk < b

k k

P = "a + 2  a,"v        1 = "a + 2  ¿>,"v
;=1 Í-1

and
0 = P(x,) = q(x,)

where 1 < y, < \ < a /or i = \, . . . , I and a < A, < y, < N for i = I +

1, . . . , k. Then \p(x)\ < \q(x)\ for all x E (a, b) with strict inequality if

x t^ x¡, i = I, . . . , k provided p i= q.

The proof of this theorem may be safely omitted since it is quite similar to

the proof of Theorem 1.

3. Applications. Throughout this section we will assume that (M,}f=1 C

C(a, b) is a Descartes system on (a, b) and that {w,}f=1 C Lp(a, b), 1 < p <

oo, whenever the Lp norm is discussed (when/? = co we really mean C[a, b]

with the supremum norm and the {u¡}^=x from a Descartes system on the

closed interval [a, b]). We will denote by \\f\\p the integral (/* \f(t)\" dt)x/p

with appropriate modification ifp = oo.

Let 1 < k < N and let A = {A = (X,, .. ., A*.): \ are integers and 1 < A,

< • • • < Xk < N}. For any À G A we set S(\) = span {«^}*=i. Finally,

dp(\) will denote the L (a, b) distance of uN from 5(A) (i.e. dp(\) = inf {\\uN

- s\\p: s E S(\)}).

The next theorem was proved in [1] for p = oo under slightly more

restrictive hypotheses and for 1 < p < oo by Pinkus [5]. We present a

different proof using Theorem 1.

Theorem 3. Let k and N be as above and A E A. Set A* = (N - k, . . . , N

- l),thenif\^\*
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dp(\*)<dp(X)

far 1 < p < oo.

Proof. Let sx be the best Lp approximation to uN from S(X) with A =?= A*.

Then q = uN — sx has A; distinct zeroes in (a, ¿>), say x,,..., xk [4]. Deter-

mine j* G S (A*) by the equations (uN - s*)(x¡) = 0 for i = 1, . . ., k. These

equations are uniquely solvable by (2.1). Theorem 1 now implies that

|K - s*)(x)\ < \(uN - s)(x)\

for all x E (a, b), x ¥= xjy i = I, . . . , k. Thus for 1 < p < oo \\uN — s*\\p <

\\un ~ s\\p- If P = °° we have 11% — í*||oo < \\un ~ 5lloo> 0U^ tne additional

assumption that the {M,}f=1 are a Descartes system on [a, b] then yields the

strict inequality.

We may obtain a similar result by using Theorem 2 as follows. Let a be an

integer between 1 and N, and let /, m, and k be given nonnegative integers

satisfying l<a-l,a + m<N, and / + m = k. We set A(/, m; a) = (A =

(A„ ..., A*): 1 < A, < • • • < X, < a < A/+1 < • • • < A* < TV, A, inte-
gers}. For A and ¡i in A(/, m; a) we say A < p provided

(i)A, < ft, i = 1, ...,/, and

(ii) A, > ft, i - / + 1,..., k.
Thus the "largest" element in A(/, m; a) is A** = (a - I, a - I + 1, . . . , a

— 1, a + 1, . . . , a + m). With this notation we can now state

Theorem 4. Let A G A(/, m; a) with A * A**. Then dp(X**) < dp(\) for

1 < p < 00.

This theorem is proved in a manner analogous to Theorem 3.

The conjecture of Lorentz is a corollary of Theorem 3 since (x'}f_0 is a

Descartes system on (0, oo). More generally, if one wants to approximate x",

1 < a < N with a an integer, on 0 < a < b < oo in the Lp[a, b] norm by

linear combinations of the form 2*= x a,**1 where k is fixed, A, ¥= a, i =

1, . . . , k and A, nonnegative integers, then Theorem 4 tells us that the

optimal set {A*}*=1 = B must satisfy {B u a) is a set of consecutive inte-

gers.

We remark in closing that Theorems 3 and 4 could be strengthened to

include approximation in Lpdi) where jn is a positive measure such that

span {w,}f=1 is of dimension N in Lp(\i). This is easy to see since Theorems 1

and 2 are pointwise results.
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