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ON THE OPERATOR EQUATION AX + XB = Q
JEROME A. GOLDSTEIN!

ABSTRACT. Consider the operator equation (s) AX + XB = Q; here 4 and
B are (possibly unbounded) selfadjoint operators and Q is a bounded
operator on a Hilbert space. The theory of one parameter semigroups of
operators is applied to give a quick derivation of M. Rosenblum’s formula
for approximate solutions of (s). Sufficient conditions are given in order that
(») has a solution in the Schatten-von Neumann class G, if Q is in C,.
Finally a sufficient condition for solvability of (s) is given in terms of T.
Kato’s notion of smoothness.

1. Introduction. Suppose A and B are (possibly unbounded) selfadjoint
operators on a complex separable Hilbert space JC. Of concern is the
operator equation

(1) AX + XB=Q
where Q is a given bounded operator. By a solution of (1) we mean a

bounded operator X on I which maps %) (B) (= the domain of B) into
%D (A) such that

AXf + XBf = Of

holds for all fin % (B).

Marvin Rosenblum [7] has studied (1) by a perturbation procedure. For
other papers on the subject see the bibliographies in [S], [7]. We shall derive
Rosenblum’s formula ((4) below) for approximate solutions of (1) as an
elementary consequence of the easy parts of the Hille-Yosida-Phillips theory
of semigroups of operators. As a byproduct of this approach we find a simple
sufficient condition for (1) to have a solution in the Schatten-von Neumann
class C, of compact operators when Q belongs to C,, 1 < p < c0.

2. The main result. The Schatten-von Neumann class C, of operators on i
is the set of all compact operators L on JC for which |||L|||, < oo where

|||L|”:= (trace |L|P) for1 < p < oo,

[IL|I| , =|IL||= the operator norm of L;
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32 J. A. GOLDSTEIN
here |L| = (L*L)'/2. G, is a Banach space under ||| - |||, (cf. e.g. [6], [8]). C,, is
the set of all compact operators on JC.

THEOREM. Let A, B be selfadjoint operators on I and let Q be bounded. The
approximation equation

2) yX, + AX, + X,B=Q
has for y > 0 a unique solution given by the weak integrals (with z = x + iy)
3) X, = —ifwe‘”yexp(itA)Q exp(itB) dt
0
I Y B PR | -1
@) =5 f_ (4-iD7'Q(B - 21) d.

There is a bounded solution of (1) iff {||X,]|: 0 <y <1} is bounded. Let
1 < p < . There is a solution of (1) in @p if

@) {lIX|ll,: 0 <y < 1} is bounded,

(ii) for each € > O there is a finite dimensional subspace M, of JC such that if
Z, is the restriction of X, to M,* then ||Z,|| < € for 0 < y < 1.

PrROOF. Let ¢:,-) denote the L?(R) inner product. Saying that X =
/%, R(t) dt (weak integral) means that for all f, g € J(, the complex-valued
function 1 - (R (?)f, g) is integrable and {Xf, g) = [® (R(!)f, &) dt.

Define G on C, (1 < p < ) as follows: for X, Y € C,, X € D(G) and
GX = Y means that X (°D(B)) C D(A) and for all f € )(B), AXf + XBf =
Yf. Then iG generates a strongly continuous (or (Cy)) group of isometries (cf.
[2], [3], [10]) on C, given by

exp(itG)(X) = exp(itd)Xexp(itB), X € C,.
The proof is straightforward; for details see [1], which also contains the
converse result for p # 2.

Recall that if C generates a (C,) contraction semigroup {exp(¢C)}, then for

all A with Re A > 0, A is in the resolvent set of C and

©) WM -C)'= f Ze~Mexp(1C) dt.
0
Consequently for Q € €, and p such that Im p > 0,

(W +G)'Qg= —ij(;ooe‘“‘exp(itG)Q dt
(6) o
= —i fo e'*exp(itA) Qexp(itB) dt.
Also, X = (uI + G)~!Q satisfies
pX + AX + XB = Q.

Taking p = 2iy with y > 0 and writing X, for X, we find that the unique
solution of (2) is given by (3). Also, (5) (with C = iG) gives the easy estimate

X1, < lIQlll,/2y < oo.



ON THE OPERATOR EQUATION AX + XB = Q 33

Let j(f) = e > Lexp(itC) for ¢t > 0 and j(t) =0 for t <0, where L is
bounded and C selfadjoint. Using (5) we compute the Fourier transform of j
to be

© .
e"(t) dt=

1
0= [, Vi

(y+s+C)!

Let
k(t) = e exp(—itd),  h(t) = e™”'Qe™®

for ¢t > 0, and let k() = h(¢) = 0 for ¢+ < 0. Taking successively j = h (L =
Q,C=B)and j=k (L=1,C = — A) and plugging into the Plancherel
formula (h, k> = (h, k) we conclude that the expressions in (3) and (4) are
equal. These formulas for X, were derived assuming Q to be compact, but it
is straightforward to check that they are valid whenever Q is bounded. That
(1) has a bounded solution iff {||X}||: 0 < y < 1} is bounded follows easily as
in [7].

Formula (4) for X, is due to Rosenblum [7]; formula (3) appears to be new.

Next we ask: When is there a solution of (1) in @p? First we deal with the
G, case.

LeMMA. Let {T,,} be a sequence of operators in C_,. Then {T,} is precompact
in C, iff the following two conditions hold.

@ {|IT,||} is a bounded sequence.

(ii) For each £ > O there is a finite dimensional subspace M, of IC such that if
S, is the restriction of T, to M,*, then ||S,|| < & for all n.

The straightforward proof is omitted.

The C,, assertion of the Theorem now follows; any limit of a sequence X,
with y,|0 is a solution of (1). Next let 1 < p < co and replace (i) of the
Lemma by

@,) {/lIT,lll,} is a bounded sequence.

(i,) and (ii) do not imply that {7,} is precompact in C, for p < c0.
However, since (i,) implies (i), (i,) and (ii) imply ||7,, — T'|| -0 for some
T € C,, and some subsequence {7, } by the Lemma. Let R, = |T,, |”. Then
for all finite rank operators L on 3,

|trace(|T1L)| = Jim |trace(R,L)| < Ko||L||
—00

where K, = sup,[||R,||[5 < oo. It follow that|T|? is in the trace class, whence
T € C,. Thus any limit point of X, (with y|0) is a solution of (1) which
belongs to C,. Q.E.D.

3. Remarks. Let L be bounded and C selfadjoint. Following T. Kato [4], we
say that L is C-smooth if there is a constant k = k(L, C) > 0 such that

7 I expleC) A de< k| A

for all f € 3. This condition is of fundamental importance in scattering
theory.
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COROLLARY. Let A and B be selfadjoint. Let Q = QtQ, where Q, is
A-smooth and Q, is B-smooth. Then (1) has a solution.

ProoF. Define S by
S = f cmexp(itA)Q’,‘Qzexp(itB) dt
0

(weak integral). Let f, g € 3. Then by the Schwarz inequality,
2

KSf, £f =| [ QaexplitB) 1, Qrexp(~itd) e

< ( [ “lIg.exptin) j]|2dt)( [Igexe(~ i)l dt)

< k(@ BYK(Q,, DAl 8l
Thus S is bounded. Moreover, the above argument shows that ||X | <
k(Q,, B)k(Q,, A) < oo for 0 < y < 1 (see (3)). The Corollary now follows
from the Theorem.

Let A be the selfadjoint realization of the Laplacian on L*[R?), let a, b be
nonzero real numbers, and let A = aA, B = bA. Let Q be the operation of
multiplication by a complex-valued function ¥ on R where ¥ € L®(R®) N
L*}(R%). Then (see [4, p. 276]) by the Corollary, there is a bounded operator
X such that aAXf+ bXAf = Vf for all f in the Sobolev space HR®)
(= D).

Our techniques extend easily to solve certain equations of the type (1)
where A and B generate uniformly bounded groups on a Banach space. When
the space is a complex Hilbert space, then i4 and iB are similar to selfadjoint
operators, according to a theorem of Sz.-Nagy [9], but the similarity trans-
forms need not commute with one another.

REFERENCES

1. E. Berkson, R. J. Fleming, J. A. Goldstein, and J. Jamison, One-parameter groups of
isometries on G, (to appear).
2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq.
Publ. Vol. 31, Providence, R. I., 1957.
3. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
4. , Wave operators and similarly for some non-selfadjoint operators, Math. Ann. 162
(1966), 258-279.
5. G. K. Pedersen, On the operator equation HT + TH = 2K, Indiana U. Math. J. 25 (1976),
1029-1033.
6. J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand, London, 1971.
7. M. Rosenblum, The operator equation BX — XA = Q with self-adjoint A and B, Proc.
Amer. Math. Soc. 20 (1969), 115-120.
8. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
9. B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math.
Szeged 11 (1974), 152-157.
10. K. Yosida, Functional analysis, Springer-Verlag, New York, 1965.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118



