ON THE OPERATOR EQUATION AX + XB = Q

JEROME A. GOLDSTEIN¹

ABSTRACT. Consider the operator equation (*) AX + XB = Q; here A and B are (possibly unbounded) selfadjoint operators and Q is a bounded operator on a Hilbert space. The theory of one parameter semigroups of operators is applied to give a quick derivation of M. Rosenblum's formula for approximate solutions of (*). Sufficient conditions are given in order that (*) has a solution in the Schatten-von Neumann class \mathcal{C}_p if Q is in \mathcal{C}_p . Finally a sufficient condition for solvability of (*) is given in terms of T. Kato's notion of smoothness.

1. Introduction. Suppose A and B are (possibly unbounded) selfadjoint operators on a complex separable Hilbert space \mathcal{K} . Of concern is the operator equation

$$AX + XB = Q$$

where Q is a given bounded operator. By a solution of (1) we mean a bounded operator X on \mathcal{K} which maps $\mathfrak{D}(B)$ (= the domain of B) into $\mathfrak{D}(A)$ such that

$$AXf + XBf = Of$$

holds for all f in $\mathfrak{D}(B)$.

Marvin Rosenblum [7] has studied (1) by a perturbation procedure. For other papers on the subject see the bibliographies in [5], [7]. We shall derive Rosenblum's formula ((4) below) for approximate solutions of (1) as an elementary consequence of the easy parts of the Hille-Yosida-Phillips theory of semigroups of operators. As a byproduct of this approach we find a simple sufficient condition for (1) to have a solution in the Schatten-von Neumann class \mathcal{C}_p of compact operators when Q belongs to \mathcal{C}_p , $1 \le p \le \infty$.

2. The main result. The Schatten-von Neumann class \mathcal{C}_p of operators on $\mathfrak R$ is the set of all compact operators L on $\mathfrak R$ for which $|||L|||_p < \infty$ where

$$|||L|||_p^p = (\text{trace } |L|^p) \text{ for } 1 \le p < \infty,$$

 $|||L|||_{\infty} = ||L|| = \text{ the operator norm of } L;$

Received by the editors November 1, 1977.

AMS (MOS) subject classifications (1970). Primary 47A50; Secondary 47B05, 47B15, 47D05. Key words and phrases. Hilbert space, selfadjoint operator, operator equation, compact operator, Schatten-von Neumann class, one-parameter group of isometries.

¹Partially supported by NSF Grant MCS 76-06515 A01.

here $|L| = (L^*L)^{1/2}$. \mathcal{C}_p is a Banach space under $||| \cdot |||_p$ (cf. e.g. [6], [8]). \mathcal{C}_{∞} is the set of all compact operators on \mathcal{K} .

THEOREM. Let A, B be selfadjoint operators on \mathfrak{R} and let Q be bounded. The approximation equation

$$iyX_v + AX_v + X_vB = Q$$

has for y > 0 a unique solution given by the weak integrals (with z = x + iy)

(3)
$$X_{y} = -i \int_{0}^{\infty} e^{-2iy} \exp(itA) Q \exp(itB) dt$$

(4)
$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} (A - \bar{z}I)^{-1} Q(B - zI)^{-1} dx.$$

There is a bounded solution of (1) iff $\{||X_y||: 0 < y < 1\}$ is bounded. Let $1 \le p \le \infty$. There is a solution of (1) in \mathcal{C}_p if

- $(i_p) \{ |||X_p|||_p : 0 < y < 1 \}$ is bounded,
- (ii) for each $\varepsilon > 0$ there is a finite dimensional subspace M_{ε} of \mathcal{K} such that if Z_{y} is the restriction of X_{y} to M_{ε}^{\perp} then $||Z_{y}|| \le \varepsilon$ for 0 < y < 1.

PROOF. Let $\langle \cdot, \cdot \rangle$ denote the $L^2(\mathbf{R})$ inner product. Saying that $X = \int_{-\infty}^{\infty} R(t) dt$ (weak integral) means that for all $f, g \in \mathcal{H}$, the complex-valued function $t \to \langle R(t)f, g \rangle$ is integrable and $\langle Xf, g \rangle = \int_{-\infty}^{\infty} \langle R(t)f, g \rangle dt$.

Define G on \mathcal{C}_p $(1 \le p \le \infty)$ as follows: for $X, Y \in \mathcal{C}_p, X \in \mathfrak{D}(G)$ and GX = Y means that $X(\mathfrak{D}(B)) \subset \mathfrak{D}(A)$ and for all $f \in \mathfrak{D}(B)$, AXf + XBf = Yf. Then iG generates a strongly continuous (or (C_0)) group of isometries (cf. [2], [3], [10]) on \mathcal{C}_p given by

$$\exp(itG)(X) = \exp(itA)X\exp(itB), \quad X \in \mathcal{C}_p.$$

The proof is straightforward; for details see [1], which also contains the converse result for $p \neq 2$.

Recall that if C generates a (C_0) contraction semigroup $\{\exp(tC)\}$, then for all λ with Re $\lambda > 0$, λ is in the resolvent set of C and

(5)
$$(\lambda I - C)^{-1} = \int_0^\infty e^{-\lambda t} \exp(tC) dt.$$

Consequently for $Q \in \mathcal{C}_p$ and μ such that Im $\mu > 0$,

(6)
$$(\mu I + G)^{-1}Q = -i \int_0^\infty e^{i\mu t} \exp(itG)Q dt$$
$$= -i \int_0^\infty e^{i\mu t} \exp(itA)Q \exp(itB) dt.$$

Also, $X = (\mu I + G)^{-1}Q$ satisfies

$$\mu X + AX + XB = Q.$$

Taking $\mu = 2iy$ with y > 0 and writing X_y for X, we find that the unique solution of (2) is given by (3). Also, (5) (with C = iG) gives the easy estimate

$$|||X_y|||_p \le |||Q|||_p/2y < \infty.$$

Let $j(t) = e^{-yt} L \exp(itC)$ for t > 0 and j(t) = 0 for t < 0, where L is bounded and C selfadjoint. Using (5) we compute the Fourier transform of j to be

$$\hat{j}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ist} j(t) dt = \frac{i}{\sqrt{2\pi}} (iy + s + C)^{-1}.$$

Let

$$k(t) = e^{-yt} \exp(-itA), \qquad h(t) = e^{-yt} Q e^{itB}$$

for $t \ge 0$, and let k(t) = h(t) = 0 for t < 0. Taking successively j = h (L = Q, C = B) and j = k (L = I, C = -A) and plugging into the Plancherel formula $\langle h, k \rangle = \langle \hat{h}, \hat{k} \rangle$ we conclude that the expressions in (3) and (4) are equal. These formulas for X_y were derived assuming Q to be compact, but it is straightforward to check that they are valid whenever Q is bounded. That (1) has a bounded solution iff $\{||X_y||: 0 < y < 1\}$ is bounded follows easily as in [7].

Formula (4) for X_p is due to Rosenblum [7]; formula (3) appears to be new. Next we ask: When is there a solution of (1) in \mathcal{C}_p ? First we deal with the \mathcal{C}_{∞} case.

LEMMA. Let $\{T_n\}$ be a sequence of operators in \mathcal{C}_{∞} . Then $\{T_n\}$ is precompact in \mathcal{C}_{∞} iff the following two conditions hold.

- (i) $\{||T_n||\}$ is a bounded sequence.
- (ii) For each $\varepsilon > 0$ there is a finite dimensional subspace M_{ε} of \mathcal{K} such that if S_n is the restriction of T_n to M_{ε}^{\perp} , then $||S_n|| \leq \varepsilon$ for all n.

The straightforward proof is omitted.

The \mathcal{C}_{∞} assertion of the Theorem now follows; any limit of a sequence X_{y_n} with $y_n \downarrow 0$ is a solution of (1). Next let $1 \leq p < \infty$ and replace (i) of the Lemma by

- $(i_p) \{ |||T_n|||_p \}$ is a bounded sequence.
- (i_p) and (ii) do *not* imply that $\{T_n\}$ is precompact in \mathcal{C}_p for $p < \infty$. However, since (i_p) implies (i), (i_p) and (ii) imply $||T_{n_k} T|| \to 0$ for some $T \in \mathcal{C}_{\infty}$ and some subsequence $\{T_{n_k}\}$ by the Lemma. Let $R_k = |T_{n_k}|^p$. Then for all finite rank operators L on \mathcal{K} ,

$$\left|\operatorname{trace}(\left|T\right|^{p}L)\right| = \lim_{k \to \infty} \left|\operatorname{trace}(R_{k}L)\right| \leq K_{0}\|L\|$$

where $K_0 = \sup_k |||R_k|||_p^p < \infty$. It follow that $|T|^p$ is in the trace class, whence $T \in \mathcal{C}_p$. Thus any limit point of X_p (with $p \downarrow 0$) is a solution of (1) which belongs to \mathcal{C}_p . Q.E.D.

3. Remarks. Let L be bounded and C selfadjoint. Following T. Kato [4], we say that L is C-smooth if there is a constant k = k(L, C) > 0 such that

$$\int_{-\infty}^{\infty} \|L \exp(itC) f\|^2 dt \le k \|f\|^2$$

for all $f \in \mathcal{K}$. This condition is of fundamental importance in scattering theory.

COROLLARY. Let A and B be selfadjoint. Let $Q = Q_1^*Q_2$ where Q_1 is A-smooth and Q_2 is B-smooth. Then (1) has a solution.

PROOF. Define S by

$$S = \int_0^\infty \exp(itA) Q_1^* Q_2 \exp(itB) dt$$

(weak integral). Let $f, g \in \mathcal{H}$. Then by the Schwarz inequality,

$$\left| \left\langle Sf, g \right\rangle \right|^2 = \left| \int_0^\infty \left\langle Q_2 \exp(itB) f, Q_1 \exp(-itA) g \right\rangle dt \right|^2$$

$$\leq \left(\int_0^\infty \left\| Q_2 \exp(itB) f \right\|^2 dt \right) \left(\int_0^\infty \left\| Q_1 \exp(-itA) g \right\|^2 dt \right)$$

$$\leq k(Q_2, B) k(Q_1, A) \left\| f \right\|^2 \|g\|^2.$$

Thus S is bounded. Moreover, the above argument shows that $||X_y|| \le k(Q_2, B)k(Q_1, A) < \infty$ for 0 < y < 1 (see (3)). The Corollary now follows from the Theorem.

Let Δ be the selfadjoint realization of the Laplacian on $L^2(\mathbb{R}^3)$, let a, b be nonzero real numbers, and let $A = a\Delta$, $B = b\Delta$. Let Q be the operation of multiplication by a complex-valued function V on \mathbb{R}^3 where $V \in L^{\infty}(\mathbb{R}^3) \cap L^{3/2}(\mathbb{R}^3)$. Then (see [4, p. 276]) by the Corollary, there is a bounded operator X such that $a\Delta Xf + bX\Delta f = Vf$ for all f in the Sobolev space $H^2(\mathbb{R}^3)$ (= $\mathfrak{D}(\Delta)$).

Our techniques extend easily to solve certain equations of the type (1) where A and B generate uniformly bounded groups on a Banach space. When the space is a complex Hilbert space, then iA and iB are similar to selfadjoint operators, according to a theorem of Sz.-Nagy [9], but the similarity transforms need not commute with one another.

REFERENCES

- 1. E. Berkson, R. J. Fleming, J. A. Goldstein, and J. Jamison, One-parameter groups of isometries on \mathcal{C}_p (to appear).
- 2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, R. I., 1957.
 - 3. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
- 4. _____, Wave operators and similarly for some non-selfadjoint operators, Math. Ann. 162 (1966), 258-279.
- 5. G. K. Pedersen, On the operator equation HT + TH = 2K, Indiana U. Math. J. 25 (1976), 1029–1033.
 - 6. J. R. Ringrose, Compact non-self-adjoint operators, Van Nostrand, London, 1971.
- 7. M. Rosenblum, The operator equation BX XA = Q with self-adjoint A and B, Proc. Amer. Math. Soc. 20 (1969), 115–120.
 - 8. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
- 9. B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. Szeged 11 (1974), 152-157.
 - 10. K. Yosida, Functional analysis, Springer-Verlag, New York, 1965.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118