THE FREDHOLM RADIUS OF A BUNDLE OF CLOSED LINEAR OPERATORS

E.-O. LIEBETRAU

ABSTRACT. Given a bundle of linear operators $T - \lambda S$, where T is closed and S is bounded, a sequence $\{\delta_m(T:S)\}$ of extended real numbers is defined. If T is a Fredholm operator, the limit $\lim \delta_m(T:S)^{1/m}$ exists and is equal to the supremum of all r > 0 such that $T - \lambda S$ is a Fredholm operator for $|\lambda| < r$.

Throughout this paper X and Y are complex Banach spaces, T is a closed linear operator with domain D(T) in X and range R(T) in Y, and S is a bounded linear operator from X into Y. K(X) is the space of compact linear operators on X, and $\Phi(T:S)$ is the set of those complex numbers λ for which $T - \lambda S$ is a Fredholm operator.

Given $m \ge 1$, the element (x_1, \ldots, x_m) of $D(T)^m$ is called a chain for T and S if $Tx_i = Sx_{i-1}$ for $i = 2, \ldots, m$. Put

$$\delta_m = \delta_m(T:S) = \sup_{C \in K(X)} \inf_{(x_1, \dots, x_m)} \frac{\|Tx_1\|}{\|(I-C)x_m\|}$$

where the infimum is taken over all chains (x_1, \ldots, x_m) for T and S. Here I denotes the identity mapping in X.

When X = Y and S = I, the chains for T and S are of the form $(T^{m-1}x, \ldots, Tx, x)$ with $x \in D(T^m)$, and

$$\delta_m(T:I) = \delta_1(T^m:I) = \sup_{C \in K(X)} \inf_{x \in D(T)} \frac{\|T^m x\|}{\|(I-C)x\|} .$$

Roughly speaking $\delta_1(T:I)$ is the reduced minimum modulus of T corresponding to the *m*-seminorm introduced by A. Lebow and M. Schechter in [4]. $\delta_1(T:I)$ was studied in [5] and there it was shown that for a Fredholm operator T, $\lim \delta_1(T^m:I)^{1/m}$ exists and is equal to the distance $d(0, \mathbb{C} \setminus \Phi(T:I))$ of 0 to the complement of the Fredholm set of T.

THEOREM. Let T be a Fredholm operator. Then

$$\lim_{n\to\infty} \delta_m(T:S)^{1/m}$$

exists and is equal to $d(0, \mathbb{C} \setminus \Phi(T : S))$, the Fredholm radius of T and S.

This result is closely related to the stability radius of a bundle of operators

Received by the editors June 29, 1977.

AMS (MOS) subject classifications (1970). Primary 47B30, 47A55; Secondary 47A10.

Key words and phrases. Fredholm operators, perturbation theory.

[©] American Mathematical Society 1978

studied by H. Bart and D. C. Lay [1] in general and earlier by K.-H. Förster and M. A. Kaashoek [2] in the case X = Y and S = I. In addition, the proof of the theorem requires a modification of the decomposition theorem of T. Kato [3, Theorem 4]. Both stability radius and decomposition use the following notation (see [3], [1]).

Define subspaces $N_m = N_m(T:S)$ and $R_m = R_m(T:S)$ of X by $N_0 = (0), \quad N_m = T^{-1}SN_{m-1},$

$$R_0 = X$$
, $R_m = S^{-1}TR_{m-1}$, $m = 1, 2, ...,$

The smallest number *m* for which the null space $N(T) = N_1$ of *T* is not contained in R_m will be denoted by $\nu(T:S)$. Further let $\Delta(T:S)$ denote the open set of all λ in $\Phi(T:S)$ such that $\nu(T - \lambda S:S) = \infty$.

1.1. Stability radius [1]. For $m \ge 1$ let $\gamma_m = \gamma_m(T:S)$ denote the supremum of all $c \ge 0$ with the property that

$$||Tx_1|| \ge c \cdot d(x_m, N_m)$$

for every chain (x_1, \ldots, x_m) . If T is a Fredholm operator, the limit $\lim \gamma_m(T:S)^{1/m}$ exists and is equal to $d(0, \mathbb{C} \setminus [\Delta(T:S) \cup \{0\}])$, i.e. the supremum of all r > 0 such that $n(T - \lambda S) = \dim N(T - \lambda S)$ and $d(T - \lambda S) = \operatorname{codim} R(T - \lambda S)$ are constant on $0 < |\lambda| < r$.

1.2. Suppose n(T) is finite. Then for $m \ge 1$ there is a compact projection P_m of X onto N_m such that $||P_m|| \le m \cdot n(T)$. Then

$$||(I - P_m)x_m|| \leq ||I - P_m||d(x_m, N_m)| \leq ||I - P_m||\gamma_m(T:S)^{-1}||Tx_1||$$

for every chain (x_1, \ldots, x_m) where, as usual, $0^{-1} = \infty$. Therefore, γ_m and δ_m are related by $\gamma_m \leq (1 + mn(T))\delta_m$.

2.1. Decomposition [3, Theorem 4]. Let T be a Fredholm operator such that $\nu(T:S)$ is finite. There exist topological decompositions $X = X_0 \oplus X_1$ and $Y = Y_1 \oplus Y_1$ which completely reduce T and S. For i = 0, 1, let T_i and S_i denote the restrictions of T and S to X_i viewed as operators into Y_i . Then $\nu(T_0:S_0) = \infty$, S_1 is bijective, $S_1^{-1}T_1$ is nilpotent, and dim $X_1 = \dim Y_1 < \infty$. As a consequence, we have $\Delta(T_0:S_0) = \Delta(T:S) \cup \{0\}$.

2.2. Now take $0 < \rho < d(0, \mathbb{C} \setminus (T : S))$ and let Δ_{ρ} denote the set of all complex numbers λ such that $|\lambda| \leq \rho$ and $\nu(T - \lambda S : S) < \infty$. By induction we remove the finite set Δ_{ρ} from $\Delta(T : S)$ and obtain decompositions $X = X_{\rho}$ $\oplus X_1$ and $Y = Y_{\rho} \oplus Y_1$ such that $\Delta(T_{\rho} : S_{\rho}) = \Delta(T : S) \cup \Delta_{\rho}$, where T_{ρ} and S_{ρ} are restrictions of T and S to X_{ρ} as in 2.1.

2.1 and 2.2 remain true if Fredholm operators are replaced by semi-Fredholm operators. However, this is not possible in the case 1.1, see [1, 4.1].

Now we are able to prove the theorem. It will be shown

(a) $d(0, \mathbb{C} \setminus \Phi(T:S)) \leq \liminf \delta_m(T:S)^{1/m}$ and

(b) $\limsup \delta_m(T:S)^{1/m} \leq d(0, \mathbb{C} \setminus \Phi(T:S)).$

Both parts together establish the theorem.

(a) Since T is Fredholm, $d(0, \mathbb{C} \setminus \Phi(T : S))$ is positive. Take $0 < \rho < d(0, \mathbb{C} \setminus \Phi(T : S))$. 1.1 and 2.2 imply that $\rho \leq \lim \gamma_m (T_\rho : S_\rho)^{1/m}$. For m =

1, 2, ... let P_m be a projection of X onto $N_m(T_\rho : S_\rho)$ with $||P_m|| \le mn(T_\rho)$ and let (x_1, \ldots, x_m) be a chain for T and S. Furthermore let P and Q be the bounded projections of X onto X_1 along X_ρ and of Y onto Y_1 along Y_ρ , respectively. Then $P_m P = 0$, $P_m + P \in K(X)$, and it is easy to verify that $((I - P)x_1, \ldots, (I - P)x_m)$ is a chain for T_ρ and S_ρ . But then

$$\| [I - (P_m + P)] x_m \| = \| (I - P_m) (I - P) x_m \|$$

$$\leq \| I - P_m \| \gamma_m (T_\rho : S_\rho)^{-1} \| T_\rho (I - P) x_1 \|$$

$$\leq \| I - P_m \| \gamma_m (T_\rho : S_\rho)^{-1} \| I - Q \| \| T x_1 \|,$$

as in 1.2. Hence

$$\left[\left(1+mn(T_{\rho})\right)\|I-Q\|\right]^{-1}\gamma_{m}(T_{\rho}:S_{\rho}) \leq \delta_{m}(T:S),$$

and consequently

 $\rho \leq \lim \gamma_m (T_\rho: S_\rho)^{1/m} \leq \lim \inf \delta_m (T:S)^{1/m},$

which proves (a).

(b) Take $0 < |\lambda| < \alpha < \limsup \delta_m (T:S)^{1/m}$. First, suppose $\nu(T:S) = \infty$. This restriction will be removed later with the aid of 2.1. It will be shown that $T - \lambda S$ is a Fredholm operator. There exists some *m* and a compact operator $C = C_{\alpha,m}$ on X such that

$$\|(I-C)x_m\| \leq \alpha^{-m}\|Tx_1\|$$

for every chain (x_1, \ldots, x_m) for T and S. Since T is Fredholm and $\nu(T:S) = \infty$, that is, $N(T) \subseteq R_{m-1}$, there exists a relative inverse L_m of T such that $L_m TR_n \subseteq R_n$ for $n = 0, 1, \ldots, m-1$. Since TR_{m-1} has finite deficiency in Y, there is a projection Q of Y onto TR_{m-1} such that $||Q|| \le 1 + md(T)$. Take $y \in Y$ and put

$$x_i = (L_m S)^{i-1} L_m Q y, \qquad i = 1, \ldots, m.$$

 (x_1, \ldots, x_m) turns out to be a chain with $Tx_1 = Qy$. Consequently

$$||(I-C)(L_m S)^{m-1}L_m Q|| \leq \alpha^{-m}||Q||,$$

and taking $Q = I - P, P \in K(Y)$, we have

$$\|(I-C)(L_mS)^{m-1}L_m(I-P)S\| = \|(L_mS)^m - K_m\| \le \alpha^{-m}\|Q\| \|S\|$$

with some $K \in K(X)$

with some $K_m \in K(X)$.

Now let π denote the canonical mapping from B(X) onto B(X)/K(X). Here B(X) is the space of all bounded linear operators on X. Take any relative inverse L of T. Then $L_m - L$ is degenerate, hence $\pi(L_m S) = \pi(LS)$, and the last inequality reads

$$\|\pi(LS)^{m}\| \leq \alpha^{-m}(1 + md(T))\|S\|.$$

This implies $r_{\sigma} \leq \alpha^{-1} < |\lambda|^{-1}$.

Here r_{σ} is the spectral radius of $\pi(LS)$. But then $\lambda^{-1}\pi(I) - \pi(LS)$ is invertible in B(X)/K(X), hence $I - \lambda LS$ is Fredholm and so is $T - \lambda TLS$.

Since L is a relative inverse of T, TL = I - R, where R is a compact projection. So $T - \lambda S$ is a Fredholm operator if $\nu(T:S) = \infty$. Now suppose $\nu(T:S)$ is finite. Then $\nu(T_0:S_0) = \infty$ by 2.1. Let P_0 be the bounded projection of X onto X_0 along X_1 . Starting with a chain for T_0 and S_0 we obtain $\delta_m(T:S) \leq ||P_0|| \delta_m(T_0:S_0)$. Therefore

 $0 < |\lambda| < \limsup \delta_m (T:S)^{1/m} \le \limsup \delta_m (T_0:S_0)^{1/m}$

and by the preceding argument $T_0 - \lambda S_0$ is Fredholm. Since $S_1^{-1}T_1$ is nilpotent and $\lambda \neq 0$, $T_1 - \lambda S_1$ is bijective, thus $T - \lambda S$ is Fredholm. This proves (b).

COROLLARY 1. Let T be a Fredholm operator. Then $\Phi(T : S) = C$ if and only if $\lim \delta_m^{1/m} = \infty$, i.e. if and only if for each $\varepsilon > 0$ and sufficiently large m there are compact operators $C_{\varepsilon,m}$ on X, such that for every chain (x_1, \ldots, x_m)

$$||x_m|| \leq \varepsilon^m ||Tx_1|| + ||C_{\varepsilon,m}x_m||.$$

Let \hat{X} be D(T) endowed with the graph norm $||x||_T = ||x|| + ||Tx||$, let \hat{T} and \hat{S} be the operators T and S considered as maps from \hat{X} into Y, and let i_T be the inclusion map of \hat{X} into X. Then \hat{X} is a Banach space, \hat{T} , \hat{S} , i_T are bounded, and $\hat{T} = Ti_T$, $\hat{S} = Si_T$. Put

$$\hat{\delta}_m = \hat{\delta}_m(T:S) = \sup_{K \in K(\hat{X},X)} \inf_{(x_1,\ldots,x_m)} \frac{\|\hat{T}x_1\|}{\|(i_T - K)x_m\|},$$

where (x_1, \ldots, x_m) is a chain for \hat{T} and \hat{S} . Since $\hat{T}x_1 = Tx_1$ and $C \in K(X)$ implies $Ci_T \in K(\hat{X}, X)$, we have $\delta_m(T:S) \leq \delta_m(T:S)$.

COROLLARY 2. Let T be a Fredholm operator. Then $\lim \hat{\delta}_m(T:S)^{1/m} = d(0, \mathbb{C} \setminus \Phi(T:S))$ and, as a consequence $\Phi(T:S) = \mathbb{C}$, if i_T is compact.

PROOF. By the preceding remark we have $d(0, \mathbb{C} \setminus \Phi(T : S)) \leq \lim \inf \hat{\delta}_m^{1/m}$. Replacing T by \hat{T} , S by \hat{S} , and B(X)/K(X) by $B(\hat{X}, X)/K(\hat{X}, X)$ in part (b) of the theorem, we obtain $\limsup \hat{\delta}_m^{1/m} \leq d(0, \mathbb{C} \setminus \Phi(T : S))$. If i_T is compact, then $\hat{\delta}_m = \infty$, hence the corollary.

REMARK [5]. Let X = Y be a complex Hilbert space, suppose S = I, and let T be a densely defined normal Fredholm operator. Then $d(0, \mathbb{C} \setminus \Phi(T:I)) = \delta_1 = \hat{\delta}_1$. If moreover $d(0, \mathbb{C} \setminus \Phi(T:I)) < \infty$, i.e. the Fredholm set of T is not the whole plane, then there exists a compact operator K on X such that $\delta_1(T:I) = \gamma(T-K)$, where $\gamma(T-K)$ denotes the reduced minimum modulus of T - K. These facts use the resolution of the identity corresponding to T.

References

1. H. Bart and D. C. Lay, *The stability radius of a bundle of closed linear operators*, Univ. of Maryland, TR-76-11 (1976), 1-23.

70

^{2.} K.-H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123-131.

3. T. Kato, Perturbation theory for nullity, deficiency and other related quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.

4. A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Functional Analysis 7 (1971), 1-26.

5. E.-O. Liebetrau, Über die Fredholmmenge linearer Operatoren, Dissertation, Dortmund, 1972.

FACHBEREICH IV, UNIVERSITÄT OLDENBURG, D-2900 OLDENBURG, FEDERAL REPUBLIC OF GERMANY