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ON A DISCRETENESS CONDITION OF

THE SPECTRUM OF SCHRÖDINGER OPERATORS

WITH UNBOUNDED POTENTIAL FROM BELOW1

V. BENCI AND D. FORTUNATO

Abstract. We obtain a discreteness condition for the spectrum of the

Schrodinger operator - A + V(x) in a case in which V is not bounded from

below.

0. Introduction. Discreteness conditions of the spectrum of the Schrodinger

operators H = — A + V(x) (A the Laplacian and V a potential) have been

studied by several authors under the assumption that V is bounded from

below (cf., e.g. A. M. Molchanov [5], M. Schechter [6], I. M. Glazman [4]). In

a recent paper [1] we have proved that if F G LfjÄ"), V(x) > 0 and

/s(x„)F(x)_1 dx -^0 for |x0| -» +00 (S(x0) is the unit sphere centered at

x0), then the spectrum a(h) of the selfadjoint realization h of H in L2(R")

consists of a denumerable set of eigenvalues of finite multiplicity. The proof

is based on a compact embedding theorem of M. Berger and M. Schechter [3]

and on the use of a suitable class of weighted Sobolev spaces introduced by

the authors [2]. In the present paper we generalize the result of [1] to a case in

which V is not bounded from below; precisely, we assume that V = Vx + V2

where Vx, V2 satisfy the following assumptions:

3k >0 s.t. inf ess Vx (x) > -k and f     dx/ (Vx (x) + k)-+0
JS(x0)

for |x0|^. +00, (0.1)

V2GLn/2(R")    foxn>2. (0.2)

1. Some preliminaries. Let p0, p, be two positive Lebesgue measurable

functions on R", p G ]1, + oo[. We denote by TlJ,(R", p0, p,) the space of

distribution u on R" such that (p0)x/pu G LP(R") and (p.y/^grad u\ G

LP(R") equipped with the norm

Hr"(R-,p0,Pl) - (fRM*)\u(Xrf dx + ÍRnPx Wlgrad "Wf dx)    •
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f ''(/T, p0, px) is the closure of C0M(R") in TlJ,(R", p0, p,). As usual, we put

TX2(R", 1, 1) = H\Rn). We shall denote by S(x0) the unit ball in R"

centered at x0 E R ". Let us recall the following compact embedding theorem

(cf. [1, Theorem 2.1]).

Theorem 1.1. Let us suppose that inf ess p0(x) > 0, inf ess px(x) > 0 and

/s(^0)PoW~' dx ->0 for |x0|->+oo. Then the embedding TX,P(R", p0, p,)<^

LP(R") is compact.

2. The results. Let V E L,'oc(/?") be a real potential which admits the

decomposition V = Vx + V2, with Vx, V2 measurable, and real functions

satisfying the following assumptions:

(i) 3k > 0 such that inf ess Vx(x) > — k,

(ii) fs(Xo)(Vi(x) + k)~x dx + k -» 0 for |x0| -» + oo,

(iii) V2 E L"/2(i?")for7i > 2.

Let us consider the Hamiltonian operator formally defined by

Hu = -Au+ V(x)u

and the associated sesquilinear form

a(u, v) = ( I 2 "x,W^W + V(x)u(x)v(x) I fix,     u,«€ C0°° (Ä" ).

In the following we shall put W = TX2(R", Vx + k, 1) and its scalar product

will be denoted by (• | • ) w.

Proposition 2.1. The form (a-,-) can be continuously extended to W X W.

Proof. By virtue of (iii) and the Sobolev embedding theorem, we have

V^ E C0"(/l"),

\a(u, v)\ < |(«|tj)J + k\( u(x)v(x) dx + J V2(x)u(x)v(x) dx

<IHU,IMIw +fcHUj(*"flML2<*")

+IIf2||l«/2(a.)'|MU^ií"),Hl^*")

< ciH^-Hh' +c2||^|i./2(Ä.>H*'(ii-)'W/ii<ii")

where 2* = 2ti/(tj - 2) and c,, c2, c3 are positive constants.   Q.E.D.

Theorem 2.2. Let (i), (ii), (iii) be satisfied. Then there exists a unique

selfadjoint operator A: D(h) -+ L2(R") so that D(h) c W and (Aw|t;)L2(/r) =

a(u, v) for u E D(h), v E W. Moreover the spectrum o(h) of h is formed by a

sequence {Xk} bounded from below of isolated eigenvalues of finite multiplicity

and

L2(Rn ) = 2 Mk,       Mk±Mk, for k ¥= k',
k
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where Mk is the eigenmanifold corresponding to Xk.

Let us initially prove the following

Lemma 2.3. There exists A0 > 0 such that for each <b G C™(R"):

«|W|>/{|grad<Hx)|2 + V(XMX)\2 + K\<KX)\2} dx

> ß\\*U
where a, ß are positive constants.

Proof. V2 G Ln/2(Rn), therefore (cf. Lemma 3.1 of [8]) for each e > 0

there exist two functions 9, t/ such that 9 G L00(Rn), \\r}\\ Lr/z(R^ < e and

V2 = 9 + tj; therefore we have, Vd> G C¿°(R"),

J{|grad<í>(x)|2+ V(x)\<b(x)\2} dx

-W+fw- mfiHR-SjhW + Ö(x))|<p(x)|2a-x.       (2.1)

On the other hand, by virtue of the Sobolev embedding theorem, we have

|/(T,(x) + 0(x))|<i>(x)|2ax

<lr%-(*.) • 1*1 «*■)+ IMUot-)' WiW

<ll%-(Ä")1*«l^»)+MW^(il-)

<lñL-(Jl.)-WIÍ^.)+^WIi. (2.2)

where cx, c2 are positive constants and 2* = 2n/(n — 2). From (2.1) and (2.2)

the conclusion easily follows if we choose e < c2/2 and K0> k + \\0\\L«,(R.y

Q.E.D.
Let us now prove Theorem 2.2. If uv G C^(R") we set

o(k,o) + a0(m|o)lHä.)-[«,o].

By virtue of Lemma 2.3, W is isomorphic to the Hubert space U completion

of C0°°(/?") with respect to the scalar product [•,•]; therefore, by (ii) and

Theorem 1.1, the embeddings i: U^ L2(R") and its adjoint /*: (L2(Rn))' =-»

U' are compact. Now the proof of the theorem follows from standard

arguments (cf., e.g., the proof of Theorem 4.1 of [1] and Lemma II.6 of [7]).

Q.E.D.
Remark 2.4. We observe that (0.2) may be replaced by some other

assumption which assures that the sesquilinear form a(u, v) is bounded from

below (cf., e.g., [6] and [7]). In fact, if a(u, v) is bounded from below, Lemma

2.3 and, hence, Theorem 2.2 are still valid.
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