INNER AMENABILITY AND CONJUGATION OPERATORS

WILLIAM L. PASCHKE¹

ABSTRACT. It is shown that an infinite discrete group G is inner amenable if and only if the C^{*}-algebra generated by the unitaries on $l^2(G)$ corresponding to conjugation by $s \ (s \in G)$ does not contain the projection on the point-mass at the identity.

Let G be an infinite discrete group with identity e, and let $s \to L_s$ (resp. R_s) denote the left (resp. right) regular representation of G on $H = l^2(G)$. For $s \in G$, let $U_s = L_s R_s$, so $U_s \xi(t) = \xi(s^{-1}ts)$ for $\xi \in H$. Write $C^*(L_G, R_G)$ for the C*-algebra generated by the unitaries L_s , R_s ($s \in G$), and $C^*(U_G)$ for the C*-subalgebra of $C^*(L_G, R_G)$ generated by the unitaries U_s . Let δ denote the characteristic function of $\{e\}$, and P_{δ} the projection on the one-dimensional subspace of H spanned by δ . In [2], using computations from [1], C. A. Akemann and P. A. Ostrand proved that $C^*(L_G, R_G)$ contains the compact operators when G is the free group on two generators by showing that in this case one has $P_{\delta} \in C^*(U_G)$. Our theorem below provides an easier proof (and a generalization) of this result.

Following E. G. Effros [3], we say that G is *inner amenable* if there is a state m on the C^{*}-algebra $l^{\infty}(G)$ such that $m(\delta) = 0$ and m is invariant under the automorphisms T_s ($s \in G$) of $l^{\infty}(G)$ defined by $(T_s f)(t) = f(s^{-1}ts)$. Such an m is called a nontrivial *inner mean* on G. Inner amenability is a considerably weaker condition on G than amenability in the usual sense. The free group on two generators is an easily accessible example of a group which is not inner amenable (see [3]). Inner amenability and the behavior of $C^*(U_G)$ are related by the following theorem.

THEOREM. The group G is inner amenable if and only if $P_{\delta} \notin C^*(U_G)$.

PROOF. First suppose that $P_{\delta} \notin C^*(U_G)$. Since $U_s \delta = \delta$ for each $s \in G$, it follows that $P_{\delta}X = XP_{\delta} = (X\delta, \delta)P_{\delta}$ for every $X \in C^*(U_G)$, so $C^*(U_G) + CP_{\delta}$ is a *-algebra. We claim that it is norm-closed, and hence a C^* -algebra. [Suppose $X_n + z_n P_{\delta} \to Y$ in norm, with $X_n \in C^*(U_G)$ and $z_n \in C$. The sequence $\{z_n\}$ must be bounded (for otherwise we could pass to a subsequence and assume $|z_n| \to \infty$, forcing $z_n^{-1}X_n + P_{\delta} \to 0$ and thereby contradicting $P_{\delta} \notin C^*(U_G)$), so we may assume that $z_n \to z \in C$ and hence

Received by the editors September 16, 1977 and, in revised form, November 29, 1977.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. C*-algebra, discrete group, inner amenable.

¹Research partially supported by a grant from the National Science Foundation.

[©] American Mathematical Society 1978

 $X_n \to Y - zP_{\delta}$. We conclude that $Y \in C^*(U_G) + \mathbb{C}P_{\delta}$.] Our hypothesis permits us to define a linear functional ϕ on $C^*(U_G) + \mathbb{C}P_{\delta}$ by $\phi(X + zP_{\delta}) = (X\delta, \delta)$. Notice that

$$\phi((X + zP_{\delta})^*(X + zP_{\delta})) = (X^*X\delta, \delta) \ge 0,$$

so ϕ is a state. Extend ϕ to a state ψ on the algebra B(H) of bounded operators on H. Since $\psi(U_s) = 1$, we see that $I - U_s$ belongs to the left and right kernels of ψ for every $s \in G$ and hence $\psi(U_s X U_s^*) = \psi(X)$ for every $X \in B(H)$. For $f \in l^{\infty}(G)$, let $\pi(f)$ be the corresponding multiplication operator on H. Since $U_s \pi(f) U_s^* = \pi(T_s f)$ and $\pi(\delta) = P_{\delta}$, the state $\psi \circ \pi$ on $l^{\infty}(G)$ is a nontrivial inner mean for G, as required.

For the converse direction, suppose that G is inner amenable. The "convergence to invariance" argument in [3] yields a net $\{\xi_{\alpha}\}$ of unit vectors in H with $\xi_{\alpha}(e) = 0$ for every α and

$$\lim_{\alpha} \|U_s \xi_\alpha - \xi_\alpha\| = 0$$

for every $s \in G$. Let ψ be any w*-limit state of the net of vector states on B(H) corresponding to the net $\{\xi_{\alpha}\}$. We have $\psi(U_s) = 1$ ($s \in G$) and $\psi(P_{\delta}) = 0$. By applying ψ and the vector state corresponding to δ , one sees that the norm of the difference of P_{δ} and any finite linear combination of the U_s 's must be at least $\frac{1}{2}$, so $P_{\delta} \notin C^*(U_G)$.

References

1. C. A. Akemann and P. A. Ostrand, Computing norms in group C*-algebras, Amer. J. Math. 98 (1976), 1015-1047.

2. ____, On a tensor product C*-algebra associated with the free group on two generators (preprint).

3. E. G. Effros, Property Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045