# A REFINEMENT OF THE ARITHMETIC MEANGEOMETRIC MEAN INEQUALITY 

D. I. CARTWRIGHT AND M. J. FIELD


#### Abstract

Upper and lower bounds are given for the difference between the arithmetic and geometric means of $n$ positive real numbers in terms of the variance of these numbers.


In this note we prove a simple refinement of the arithmetic mean-geometric mean inequality. Our result solves a problem posed by Kenneth S. Williams in [5] and generalizes an inequality on p. 215 of [3]. Other estimates for the difference between the means are discussed in [2], [3] and [4].

Theorem. Suppose that $x_{k} \in[a, b]$ and $p_{k} \geqslant 0$ for $k=1, \ldots, n$, where $a>0$, and suppose that $\sum_{k=1}^{n} p_{k}=1$. Then, writing $\bar{x}=\sum_{k=1}^{n} p_{k} x_{k}$, we have

$$
\begin{equation*}
\frac{1}{2 b} \sum_{k=1}^{n} p_{k}\left(x_{k}-\bar{x}\right)^{2} \leqslant \bar{x}-\prod_{k=1}^{n}\left(x_{k}^{p_{k}}\right) \leqslant \frac{1}{2 a} \sum_{k=1}^{n} p_{k}\left(x_{k}-\bar{x}\right)^{2} \tag{1}
\end{equation*}
$$

In particular, if $p_{k}=1 / n$ for each $k$, then

$$
\begin{aligned}
\frac{1}{2 b n^{2}} \sum_{j<k}\left(x_{j}-x_{k}\right)^{2} & \leqslant \frac{x_{1}+\cdots+x_{n}}{n}-\left(\prod_{1}^{n} x_{j}\right)^{1 / n} \\
& \leqslant \frac{1}{2 a n^{2}} \sum_{j<k}\left(x_{j}-x_{k}\right)^{2}
\end{aligned}
$$

Remark. These inequalities may be generalized as follows: Let $m$ be a probability measure on $[a, b]$, where $a>0$, and let $\mu=\int_{a}^{b} t d m(t)$ and $\sigma^{2}=\int_{a}^{b}(t-\mu)^{2} d m(t)$ be the mean and variance of $m$. Then

$$
\frac{1}{2 b} \sigma^{2} \leqslant \mu-\exp \left(\int_{a}^{b} \log (t) d m(t)\right) \leqslant \frac{1}{2 a} \sigma^{2}
$$

This follows from our theorem and the weak* density of the measures of the form $\sum_{k=1}^{n} p_{k} \delta_{x_{k}}$ (where $\delta_{x}$ denotes the probability measure which is concentrated at the point $x$ ) in the set of all probability measures on $[a, b]$. (See [1, p. 709].) Notice that the inequality

$$
\exp \left(\int_{a}^{b} \log (t) d m(t)\right) \leqslant \mu
$$

Received by the editors August 15, 1977.
AMS (MOS) subject classifications (1970). Primary 26A87.
Key words and phrases. Arithmetic mean-geometric mean inequality.
is just a special case of Jensen's inequality.
Lemma. Let $0 \leqslant q \leqslant 1$. Then for all $t \geqslant 0$ we have

$$
1+q t+\frac{q(q-1)}{2} t^{2} \leqslant(1+t)^{q} \leqslant 1+q t+\frac{q(q-1)}{2} \frac{t^{2}}{1+t}
$$

Proof. After a little algebra we see that

$$
\begin{aligned}
& \frac{d}{d t} \log \left(1+q t+\frac{q(q-1)}{2} \frac{t^{2}}{1+t}\right) \\
& \quad=\frac{q}{1+t}\left\{\frac{2+(2+2 q) t+(1+q) t^{2}}{2+(2+2 q) t+q(1+q) t^{2}}\right\} \\
& \quad \geqslant \frac{q}{1+t} \quad \text { since } 0 \leqslant q \leqslant 1 \\
& \quad=\frac{d}{d t} \log (1+t)^{q}
\end{aligned}
$$

Since $(1+t)^{q}$ and $1+q t+(q(q-1) / 2)\left(t^{2} /(1+t)\right)$ agree at $t=0$, the right-hand inequality is proved.

The left-hand inequality may be proved in the same way, or by using the Taylor expansion of $(1+t)^{q}$.

Proof of the theorem. The inequalities (1) are trivially valid if $n=1$. Let $n=2$. We may suppose that $x_{2} \geqslant x_{1}$. Writing $x_{2}=(1+t) x_{1}$, with $t \geqslant 0$, and writing $p_{2}=q, p_{1}=1-q$, the desired inequalities (1) become

$$
\frac{q(1-q)}{2 b} t^{2} x_{1}^{2} \leqslant x_{1}\left\{1+q t-(1+t)^{q}\right\} \leqslant \frac{q(1-q)}{2 a} t^{2} x_{1}^{2}
$$

which follows immediately from our lemma, noting that $a \leqslant x_{1} \leqslant(1+t) x_{1}$ < $b$.
Suppose now that $n \geqslant 3$ and that the inequalities (1) have been proved for all admissible $x_{k}$ 's and $p_{k}$ 's with $n-1$ replacing $n$.

Fix $x_{1}, \ldots, x_{n}$. We may assume that the $x_{k}$ 's are distinct, for otherwise the inequalities follow from the induction hypothesis. Let us consider the lefthand inequality. Define

$$
f(p)=f\left(p_{1}, \ldots, p_{n}\right)=\bar{x}-\prod_{k=1}^{n}\left(x_{k}^{p_{k}}\right)-\frac{1}{2 b} \sum_{k=1}^{n} p_{k}\left(x_{k}-\bar{x}\right)^{2}
$$

for $p \in S=\left\{p=\left(p_{1}, \ldots, p_{n}\right): p_{k} \geqslant 0\right.$ for each $\left.k\right\}$.
There is a point $p^{\circ}$ of $S$ where $f$ is minimized subject to the constraint $\Sigma p_{k}=1$. If $p^{\circ}$ lies on the boundary of $S$, then some component of $p^{\circ}$ is zero, and hence $f\left(p^{\circ}\right) \geqslant 0$ by the induction hypothesis, and so the left-hand inequality holds.

If $p^{\circ}$ is an interior point of $S$, then we may use the Lagrange multiplier method to obtain a real number $\lambda$ such that at $p^{\circ}$,

$$
\frac{\partial f}{\partial p_{j}}=\lambda \frac{\partial}{\partial p_{j}}\left(\sum_{k=1}^{n} p_{k}-1\right) \quad \text { for all } j
$$

i.e.

$$
x_{j}-\left(\log x_{j}\right) \prod_{1}^{n}\left(x_{k}^{p_{k}}\right)-\frac{\left(x_{j}-\bar{x}\right)^{2}}{2 b}=\lambda .
$$

Thus each $x_{j}$ is a solution of the equation (in $\xi$ )

$$
\begin{equation*}
(1+\bar{x} / b) \xi-\tilde{x} \log (\xi)-\xi^{2} / 2 b=\lambda+\bar{x}^{2} / 2 b \tag{2}
\end{equation*}
$$

(writing $\tilde{x}$ for $\Pi\left(x_{k}^{p_{k}}\right)$ ).
Now between any two roots of (2) there is by Rolle's theorem a root of

$$
1+\bar{x} / b-\tilde{x} / \xi-\xi / b=0
$$

i.e. of

$$
\begin{equation*}
\xi^{2}-(b+\bar{x}) \xi+b \tilde{x}=0 \tag{3}
\end{equation*}
$$

Since (3) has at most 2 solutions, equation (2) has at most 3 solutions. The larger root of (3) is, since $\tilde{x} \leqslant \bar{x}$,

$$
\left(b+\bar{x}+\sqrt{(b+\bar{x})^{2}-4 b \tilde{x}}\right) / 2 \geqslant b
$$

Hence equation (2) has at most 2 solutions in $[a, b]$. Since each $x_{j}$ is a solution and since the $x_{j}$ 's are distinct, we must have $n \leqslant 2$, contrary to assumption.
Thus $p^{\circ}$ must be a boundary point of $S$, and so the left-hand inequality is proved.

The right-hand inequality may be proved in the same way by replacing $b$ by $a$ in the definition of $f$ and by noting that the smaller root of the equation corresponding to (3) is $\leqslant a$.

Remark. Examination of the above proof shows that the inequalities in (1) are strict unless the $x_{k}$ 's corresponding to nonzero $p_{k}$ 's are all equal. Furthermore, the constants $1 / 2 a$ and $1 / 2 b$ in (1) are the best possible. For in the case $n=2$ we have

$$
\frac{\bar{x}-\Pi\left(x_{k}^{p_{k}}\right)}{\sum p_{k}\left(x_{k}-\bar{x}\right)^{2}}=\frac{1+q t-(1+t)^{q}}{q(1-q) t^{2} x_{1}}
$$

if $0<q<1$ and $t>0$ (in the notation of the first paragraph of the proof). It is easy to see that the limit of this expression as $t$ tends to zero is $1 / 2 x_{1}$, and since $x_{1} \in[a, b)$ is arbitrary, the result follows.

## References

1. R. E. Edwards, Functional analysis, theory and applications, Holt, New York, 1965. MR 36 \#4308.
2. A. M. Fink and Max Jodeit, Jr., A generalization of the arithmetic-geometric means inequality, Proc. Amer. Math. Soc. 61 (1976), 255-261.
3. D. S. Mitrinović, Analytic inequalities, Die Grundlehren der math. Wissenschaften, Band 165, Springer-Verlag, Berlin and New York, 1970. MR 43 \# 448.
4. S. H. Tung, On lower and upper bounds of the difference between the arithmetic and the geometric mean, Math. Comput. 29 (1975), 834-836. MR 52 \# 14203.
5. K. S. Williams, Problem 247, Eureka 3 (1977), 131.

Department of Mathematics, University of Sydney, Sydney, N.S.W. 2006, Australia

