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A REFINEMENT OF THE ARITHMETIC MEAN-

GEOMETRIC MEAN INEQUALITY

D. I. CARTWRIGHT AND M. J. FIELD

Abstract. Upper and lower bounds are given for the difference between the

arithmetic and geometric means of n positive real numbers in terms of the

variance of these numbers.

In this note we prove a simple refinement of the arithmetic mean-geometric

mean inequality. Our result solves a problem posed by Kenneth S. Williams

in [5] and generalizes an inequality on p. 215 of [3]. Other estimates for the

difference between the means are discussed in [2], [3] and [4].

Theorem. Suppose that xk E [a, b] and pk > 0 for k = 1,. . ., n, where

a > 0, and suppose that 2Z"k=xpk = 1. Then, writing x = 2Z"k=xpkxk, we have

Th 2 pk(xk - x)2< x - n m < ¿ 2 pk(xk - xf.  (i)
LD    k=\ k=\ LU    k=\

In particular, ifpk = l/nfor each k, then

l/n

2¿?«2
2   (Xj-xkf<Xl + "n+X"   -(fix,)

j<k " \   1 /
2

1 ^    /„ „x2
<TL~2    2   (Xj-xk)2

j<k2an2

Remark. These inequalities may be generalized as follows: Let m he a

probability measure on [a, b], where a > 0, and let p = fa t dm(t) and

°"2 = /*(' _ r1)2 dm(t) be the mean and variance of m. Then

¿°2< "
expij   log(t)dm(t)\ < ^ a2

This follows from our theorem and the weak* density of the measures of

the form "2"k=xpk8Xk (where 8X denotes the probability measure which is

concentrated at the point x) in the set of all probability measures on [a, b].

(See [1, p. 709].) Notice that the inequality

expN   log(/)<*«(/)) < u
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is just a special case of Jensen's inequality.

Lemma. Let 0 < q < 1. Then for all t > 0 we have

q{q~l)   ¿w, jla*.-   .   - .   q{q~l)       t2
1 + qt + --- t2 < (1 + t)  < 1 + qt +2 •-*-••/- i 2 1 + /

Proof. After a little algebra we see that

dr log(i + * + —a— TT7J

9     Í 2 + (2 + 2?)i + (1 + ?)r2 1

" 1 + t j 2 + (2 + 2ç)f + 9(1 + ?)r2 j

1 + /
since 0 < q < 1

= | Ml + ')'■

Since (1 + if and 1 + qt + (q(q - l)/2)(r2/(l + t)) agree at t = 0, the

right-hand inequality is proved.

The left-hand inequality may be proved in the same way, or by using the

Taylor expansion of (1 + if.

Proof of the theorem. The inequalities (1) are trivially valid if n = 1. Let

n = 2. We may suppose that x2 > xx. Writing x2 = (1 + t)xx, with t > 0, and

writing p2 = q,px = 1 - q, the desired inequalities (1) become

î('-î)    22 fl „       ,,, ^ o(l - q)
-Yb- t2x\ < x,{l + qt - (1 + if) <-Ya- ' xi'

which follows immediately from our lemma, noting that a < x, < (1 + r)x,

< b.

Suppose now that n > 3 and that the inequalities (1) have been proved for

all admissible x^'s and/^'s with n - 1 replacing n.

Fix x,,..., x„. We may assume that the x^'s are distinct, for otherwise the

inequalities follow from the induction hypothesis. Let us consider the left-

hand inequality. Define

" l       "
f(P) = f(Pv ■■-,Pn) = X-   U    (XjP) - XT      2   Pk(Xk - X)

k-^ LD    k=l

for/? G S = {/? = (/?„ ...,p„);pk>0 for each k).

There is a point p° of S where / is minimized subject to the constraint

~Zpk = 1. If p° lies on the boundary of S, then some component of p° is zero,

and hence /(/?") > 0 by the induction hypothesis, and so the left-hand

inequality holds.

If/?0 is an interior point of S, then we may use the Lagrange multiplier

method to obtain a real number X such that at/?°,

a/=A^(jU-l)    for all/,
%*
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i.e.

« (x - x)

x,-(logx,)II(xf)-       2b       =X.

Thus each x¡ is a solution of the equation (in £)

(1 + x/b)i - x log (i) - i2/2b = X + x2/2b (2)

(writing x for II(xf ))•
Now between any two roots of (2) there is by Rolle's theorem a root of

l + x/b- x/i - i/b = 0,

i.e. of

|2 - (b + x)£ + ¿?x = 0. (3)

Since (3) has at most 2 solutions, equation (2) has at most 3 solutions. The

larger root of (3) is, since x < x,

(b + x +t/(/3 + x)2 - 4bx )/2 > b.

Hence equation (2) has at most 2 solutions in [a, b\. Since each x, is a solution

and since the x-'s are distinct, we must have n < 2, contrary to assumption.

Thus/?0 must be a boundary point of S, and so the left-hand inequality is

proved.

The right-hand inequality may be proved in the same way by replacing b

by a in the definition of / and by noting that the smaller root of the equation

corresponding to (3) is < a.

Remark. Examination of the above proof shows that the inequalities in (1)

are strict unless the xks corresponding to nonzero pks are all equal.

Furthermore, the constants l/2a and 1/2Z? in (1) are the best possible. For in

the case n = 2we have

X - n(xf ) 1 + qt - (I + tf

2ZPk(xk-xf~      *0-«)A,

if 0 < q < 1 and t > 0 (in the notation of the first paragraph of the proof). It

is easy to see that the limit of this expression as t tends to zero is l/2x,, and

since x, G [a, b) is arbitrary, the result follows.
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