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ON THE CONVERGENCE OF SOME ITERATION PROCESSES
IN UNIFORMLY CONVEX BANACH SPACES

J. GWINNER

Abstract. For the approximation of fixed points of a nonexpansive opera-

tor T in a uniformly convex Banach space E the convergence of the

Mann-Toeplitz iteration x„+1 = a„T(x„) + (1 - a„)xñ is studied. Strong

convergence is established for a special class of operators T. Via regulari-

zation this result can be used for general nonexpansive operators, if E

possesses a weakly sequentially continuous duality mapping. Furthermore

strongly convergent combined regularization-iteration methods are presen-

ted.

Throughout this note, let (E, | • |) be a uniformly convex Banach space, let

C be a nonempty closed convex subset of E. Let T; C -* C denote a

nonexpansive operator, i.e. |7Xx) - T(y)\ < |x — y\ holds for all x, y E C.

To approximate a fixed point of T we define the following iterative method

(Mann-Toeplitz process) by

x,GC,   xn+x = a„T(xn) + (l-a„)xn,       an G[0, 1] (n > 1).    (1)

We make the assumptions that S^a,, = oo and an G [0, b] with b E (0, 1)

for almost all positive integers n.

Let us recall that any mapping J: E^>E* which fulfills

(J(u),u) = \J(u)\-\u\,       \J(u)\ = \u\

for all u E E is termed a duality mapping. We verify easily (see also [3,

Theorem 8.9]) that the nonexpansive operator T satisfies

(x-y- T(x) + T(y),J(x-y))>0

for all x, y E C. This means that the operator S:= I — T is accretive. Now

we call an operator S; C^E <p-accretive if there exists a function <p:

[0, oo) -» [0, oo) strictly increasing with <p(0) = 0, and lim,^,00<p(/) = oo such

that (cf. [1] for monotone operators)

(S(x) - S(y),J(x-y)) >[<p(\x\) - <p(\y\)] -[\x\ - \y\]

\/x,y E C.     (2)

If S satisfies the stronger condition
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(S(x)-S(y),J(x-y))><p(\x-y\)-\x-y\    Vx,y E C,       (3)

then S is called uniformly ro-accretive.

Theorem 1. Let the fixed point set F of the operator T be nonempty. Suppose

the operator S = I — T is ^-accretive. Then the Mann-Toeplitz sequence {x„}

converges strongly to the unique fixed point p E F.

Proof. Since for any fixed p E F

k+. -p\< k -p\,
the sequence {x„} is bounded. Now assume px, p2 belong to F. By (2) it

follows that

[v(|j»iD-»(lAl)]-[bil-W]-A
therefore \px\ = \p2\. On the other hand F is convex, and is contained in the

uniformly convex space E. So F reduces to a single point/?.

According to a result of Ishikawa [7, Lemma 2] S (xn) converges strongly to

zero, and by a theorem due to Browder [3, Theorem 8.4, p. 103] the sequence

{x„} converges weakly to the unique fixed point/). Since J is a bounded

operator, the sequence {J(x„ — p)} remains bounded. Hence (2) implies that

[<p(kl)-<p(H)]-[kl-H]^o     («-.oo).
It follows easily (cf. [1, p. 61]) that |xj -» \p\. This yields the claimed norm

convergence of the sequence {x„} in the uniformly convex space E.

Since strictly contractive operators are uniformly tp-accretive, Theorem 3

contains a result in [5, Theorem 1]. Let us note that in a Hubert space E the

gradient/' of a Gateaux differentiable, convex functional/is <p-accretive, if

f((x+y)/2) <¿/(*) + i/f>)-[9(|x|) - ?(M)HM - \y\]

is valid for all x, y G C. This fact follows from the estimate

(/'(*) - f\y)> x-y)> 2[/(x) + f(y) - 2/((x + y)/2)\

Furthermore Theorem 1 remains true, if the inequality (2) is only assumed to

hold for all x G C and all p E F, i.e. if

(x - T(x),J(x - p)) >[q>(\x\) - <p(\p\)] ■ [|*1 - \p\]    VxECVpEF

is assumed. Operators T: C -» C that satisfy for any x,y E C

\T(x) - T(y)\ < ax\x - T(x)\ + a2\y - T(y)\

+ a3\x -y\ + a4\x - T(y)\ + as\y - T(x)\

with a, > 0 (i = 1, . . . , 5) and S;=,a, < 1 belong to this class, provided

2a, + a3 + a4 + a5 < 1

holds.

Even Theorem 1 can be applied to general nonexpansive operators T, for

then the operators Se = (1 - e)(/ - T) + eR (e > 0) inherit the (uniform)

<p-accretiveness from the "regularization operator" R. This observation

motivates the following study of the regularization method involved.
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Theorem 2. Let the fixed point set F of T in C be nonempty. Let R: C —> E

be a continuous, bounded operator. Suppose R is uniformly ^-accretive with

respect to an odd, weakly sequentially continuous duality mapping J; E -> E*.

Choose positive reals 8k, and ek E (0, 1) with lim^^ = 0, and lim^^ 8kekx

= 0. // the approximate solutions ykE C satisfy

\(l - ek)(I - T)(yk) + ekR(yk)\ < 8k,

then the sequence {yk} converges strongly to a fixed point p, which is uniquely

determined by the variational inequality

(R(p),J(p-p))<0   \/PEF. (4)

Proof. Let/? E F, and set

ßk = ((1 - e,)(7 - T)(yk) + ekR(yk),J(yk -p)).

We notice that | ßk\ < \yk - p\8k. Since I - Tis accretive, it follows

(R(yk),J(yk-p))< ßkekx. (5)

Let us prove the boundedness of the sequence {yk). On account of (5), (3)

we conclude

/W + 1*001 • \h-p\ > /W - (R(p),J(yk-p))

>(R(yk)-R(p),J(yk-p))

> <p(Iâ - p\)' \9k - p\-

We may assume without loss of generality that \yk — p\ is positive, and hence

we obtain

8ke¡rl + \R(p)\>q>(\yk-p\).

The boundedness of (yk) is immediate, and with a constant cp, dependent

only onp E F, (5) reads

(R(yk),j(yk-P))<cp8kekx. (6)

As R is a bounded operator, ekR(yk) converges to zero. Since the nonexpan-

sive operator T is also bounded, and 8k -» 0, we conclude that (/ — T)(yk)

converges strongly to zero. By a theorem due to Browder [3, Theorem 8.4] all

weak limit points of {yk), which exist by the boundedness of {yk), belong to

F. Let y = w-lim,^^ yk; then (3) and (6) imply that

cA%x - (R(y),J(y^-y)) > <p(|^ -y\)- \yK - y\.

Since / is weakly sequentially continuous, we see at once that/ = lim,^^^,

and (6) results in the claimed inequality (4). Finally we have to show that this

inequality uniquely determines p E F, thus proving the convergence of the

entire sequence {yk}. Fix somepx,p2 E F that satisfy (4), then

(R (Px),J(Px - p2)) < 0,        -(/? (p2), J(Px - p2)) < 0.

The summation of both these inequalities yields/?, = p2, since R is uniformly

(p-accretive.



32 J. GWINNER

If the regularization operator R is only tp-accretive, then similar but more

involved arguments show that the sequence {jp^} is bounded, every weak limit

point of {yk) is also a strong limit point, and every limit point belongs to the

fixed point set and satisfies (4). But as J is not linear, unless E is a Hubert

space, the set of points which fulfill (4) is generally not convex; therefore

uniqueness cannot be obtained as in the proof of Theorem 1.

The approximate solutions yk can be constructed by finitely many Mann-

Toeplitz iterations for the operator Tk = (1 - ek)T + ek(I — R) by Theorem

1, provided I - R; C-» C is nonexpansive. If furthermore C is bounded,

fixed points of T and of each Tk exist.

The simplest regularization method is given by R (x) = x - x°, x° fixed in

C. In this case Reich [10, Corollary] has already established the strong

convergence of the exact solutions yk = (I — ek)T(yk) + ekx° (8k = 0) to a

fixed point of T under similar conditions. In view of the inequality (4) which

is achieved by regularization, other choices of R should be taken into

consideration.

Inspired by the work of Brück [4], and Halpern [6] we combine m

conclusion Mann-Toeplitz iteration and regularization to the following

iteration process

z, G C, zm+x = am(l - em)T(zm) + amemU(zm) + (1 - am)zm.      (7)

Here we require that U; C —> C is a strict contraction with contraction

constant q E [0, 1). Clearly R = I — U is then uniformly tp-accretive with

q>(t) = (1 — q)t. Let us note that the choice U(z) = z, z fixed in C, reduces

(7) with em = &m(l + ®m)~x, am = \„(1 + 0m) to the iteration method which

is considered in [4, p. 123], and is also contained in the projection-iteration

method of Bakusinskii and Poljak [2, Theorem 3D] for the solution of

variational inequalities in Hubert spaces.

The subsequent results hold in arbitrary Banach spaces E.

Theorem 3. Let C be a bounded closed convex subset of E. Suppose the

sequence {y¡) converges to a fixed point p of T, where y ¡ is given by

yi = (l-ei)T(yi) + eiU(yi), (8)

with e, G (0, 1], (e,} monotonically decreasing to zero. If the two sequences {em)

and {am}, contained in (0, 1], satisfy with some strictly increasing sequence

{m(k)} of positive integers

m(k+\)

lim inf em(k)     2     «,■ > 0, (9)

m(k+\)

,lim   [em(*> - «W*+o] •    S     «, = 0> (10)
*-°° j = m(k)

then the sequence {zm) generated by (7) converges top.

Proof. We follow the pattern of proof in [4, pp. 117-119], but we dispense

with inner product structure.
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Banach's fixed point theorem guarantees existence and uniqueness of each

y¡. We calculate for m > i > 1

Vm ~y¡\ = l«m-i(l - tm-i)T(zm-\) + am_xem_xU(zm_x)

+ (l - am_x)zm_x -y\

<(1  -  «m-l)km-l -y\

+ «,m-l 1(1 *m-\)T(zm-\) + em-iU(zm_x)

-(l-ei)T(yi)-eiU(y,)\

<[1 - am_x + am.x(l - e,) + am_xe¡q]- \zm_x - y ¡\

+ «m-l(<7 - «m-1)" I^Om-l) ~   ̂ 0«-l)|-

Hence

\zm ~y¡\ <[l - «m_,e,(l - q)] ■ \zm_x -y,\ + «m_,(e, - em_x)c,    (11)

with some constant c, because T and t/ are self-mappings of the bounded set

C. Since the exp function is convex and therefore exp(r) — I > t holds, it

follows that

km -y\ < exp[-am_,£,(l - q)] ■ \zm_x -y,\ + cam_,(e,. - em_,).

By induction we conclude

m-l

-«,(1 - <l) 2   a,Vm - y¡\ < exp

On account of e, - e, < e, - em for/ < m we weaken this estimate to

m-l

*< - ^il + c 2 «/(«i -e,)-
7 = '

lzm - ^,1 < exp
m-l

-(i - ?K   S   «, I2/  - J'/l  +  C(£i  -  £m) 2    «/

Starting with this inequality, which corresponds to inequality (12) in [4], one

can easily adapt the arguments in [4, pp. 118-119] to conclude the proof. The

details are omitted.

Examples of sequences {a„} and (e„} that satisfy both the conditions (9)

and (10) are given by an = l/n, and e„ = 1/log log« for n > 2, or by

an = n~p and e„ = n~q for n > 2, provided 0 < /? < 1 and 0 < q < 1 — /?

holds (see Brück [4, p. 125]). Also one can choose an = X E (0, 1] fixed, and

£n(k) = ««(*)+1 = • • • = e„(*+i)-, = fc1-', where n(k)~k" and /? > 1. The

resulting iteration process is then related to [6, Theorem 4]. Furthermore the

choice an = X, e„ = n~p(l + it-')-1, /? G (0, 1) with n(k)~kr, r = (1 -

/?)" ' leads to the example D of Theorem 3D with PK = I in [2].

Simpler sufficiency criteria for strong convergence are provided by

Theorem 4. Let C be a bounded closed convex subset of E. Suppose, the

sequence {>>,}, given by (8), converges to a fixed point p of T, where e, G (0, 1]

and lim,^^ e, = 0. // the two sequences {e,} and (a,}, contained in (0, 1], satisfy

2 «,e, = + oo, (12)
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\*i-x-*i\-eTl = o(atei), (13)

then the sequence {zm) generated by (7) converges top.

Proof. We simplify (11) to

Sm+1:=    km+l  -yj   <[1  - <*m*mV  ~ l)]\*m ~ ^ml-

On the other hand we have

\yt-yt-i\ < (i - 0\y¡ -y¡-A + k-i - £.l ■ lrU-i)l + w\yt -yt-i\
+ k-,-*,Nt/(>,-.)l>

hence with some constant d

\y¡ -y¡-i\ < d- |e,_, - e¿|efl.

Thus we obtain with Xm = (1 - i)amem, ym = d- |em_, - ilJc^1 • Xm"1

5m+l   <(1   "Xm^m  + XmYm>

and consequently for arbitrary/ > 0

(m+y \ m+j   I   m+j \

n (i-x,)k,+ s   n (i-x*)x/Y,.   (i4)
i = m } i = m   \k=i+l /

By (12), 11(1 - Xi) diverges to zero. Since

m+j   I   m+j \

2   n (i-A)x,<i
i = m   \* = i+l /

for any/ and lim^^ y, = 0 by (13), a well-known theorem of Toeplitz (cf. [8,

p. 75]) implies that the second term in (14) converges to zero (j —> oo), too.

Thus we arrive at lim;^.M5, = 0.

This result is closely related to Theorem 3D in [2] and contains (choose

U(z) = y fixed, a, = 1 fixed) a recent result of Lions [9, Theorem 1].

The author wishes to thank the referee for pointing out the references [2],

[7]-
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