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BOUNDARY REPRESENTATIONS AND

TENSOR PRODUCTS OF C*-ALGEBRAS»

ALAN HOPENWASSER

Abstract. Let A and B be unital, generating linear subspaces of C*-

algebras & and ®, respectively. If either & or $ is a GCR algebra, then the

set of boundary representations for A ® B can be identified with the

Cartesian product of the boundary representations for A with the boundary

representations for B.

Let & be a unital C*-algebra and let A be a linear subspace of & which

contains the unit, 1, and which generates & as a C*-algebra. An irreducible

representation m of (H is said to be a boundary representation for A if m is the

only completely positive extension to â of the restriction ir\A. (A linear

mapping é on 6E is completely positive if <i> <8> 1„ is positive for all n =

1,2,..., where 1„ is the identity mapping on the algebra of n X n complex

matrices.) Boundary representations were introduced by Arveson in [1], where

he demonstrated the rôle played by boundary representations in determining

the extent to which the order and norm structure on a unital linear space, A,

of operators determines C*(A), the C*-algebra generated by A.

If & is a commutative C*-algebra, a boundary representation is essentially

just a point in the Choquet boundary of A. If S, is commutative, then

& = C(X) for some compact Hausdorff space X and each irreducible repre-

sentation 7T of & is just point evaluation at some point x E X. Every unital

positive linear mapping on & is completely positive and is also just

integration with respect to some probability measure p on X. The assertion

that it is the only completely positive extension to & of m\A becomes the

assertion that point mass at x is the only probability measure p on X for

which

f f(y)dp(y) = f(x),

for all/ E A. But this just says that x lies in the Choquet boundary for A. See

[4] for more details.

If A is a unital, generating subspace of &, let hd(A) denote the set of

boundary representations for A. Suppose that F is a unital, generating

subspace of a second C*-algebra <3J. Let & ® % denote the algebraic tensor
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product of & and <$ and let & ®y <$ denote the closure of & <8> <3à when the

latter is provided with the C*-cross norm y. The algebraic tensor product

A ® B of A and B is a uni tal, generating subspace of <£ ®y % and we may

ask about the relation between bd(,4 <8> B) and the two sets hd(A) and hd(B).

The question is easy to answer in the commutative case. If & = C(X) and

<$> = C(Y) then & ®y % = C(X X Y) and

bd(A ®B) = hd(A) X hd(B).

In this paper we shall show that the same result holds anytime one of the

factors is a GCR algebra. In the case in which % is the algebra, Mn, of n x n

matrices, this result is essentially contained in [3].

If & and % are C*-algebras, if y is any C*-cross norm on & ® %, and if

w, (resp. 772) is an irreducible representation of & (resp. $), then 77, ®y 7T2 is

an irreducible representation of & ®y %. We first show that if 77! ®y tr2 is a

boundary representation, then so are 77, and 772.

Lemma 1. Suppose that A is a unital, generating subspace for â, that B is a

unital, generating subspace for % and that 77, ®y m2 is a boundary repre-

sentation for A® B. Then 77, E hd(A) and tr2 E hd(B).

Proof. Suppose the contrary. Then one of the factors, say 77,, is not a

boundary representation. Hence there exists a completely positive linear map

<bx: & -> t(%) such that <>, =£ tt, but <bx\A = ttx\A. (Here, %x is the Hilbert

space on which trx acts.) By means of the Stinespring representation for

completely positive maps [6], one can show that the tensor product of two

completely positive maps is again completely positive. Therefore <f>, ®y -n2 is a

completely positive extension of 77, ®y m2\A ® B which is unequal to

77, ®y 772. This contradicts the assumption that mx ®y m2 E hd(A <8> B).

In general, not every irreducible representation it on & ®y % factors as a

product 77, ®y 772 of irreducible representations; if, however, we assume that

one of the C*-algebras is a GCR algebra, then every irreducible repre-

sentation does factor [2]. Note, also, that since GCR algebras are nuclear,

there is a unique C*-crossnorm on & ® 9>, which we denote by & ®m %.

Thus, when one of the factors is GCR, Lemma 1 asserts bd(^i <8> B) C hd(A)

x hd(B), provided that we identify the pair (77,, 772) with the product 77,

The following lemma is probably known, but no reference for it could be

found.

Lemma 2. Let § be a unital C*-algebra contained in another C*-algebra 5"

(with the same unit). Let <b be a completely positive map on ?T, and let it be a

representation of S such that <b\s = 77. Then <p(ts) = <¡>(t)tr(s) and <b(st) =

tt(s)<b(t),for all s E S and t E$.

Proof. Let <b = V*oV he the Stinespring representation for <b (see [6]), and

let P = VV* be the range projection of V. Observe that PoP restricted to S is

unitarily equivalent to <j>|s = 77. In particular, PoP is multiplicative on S, so
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that P is semi-invariant for a(S), i.e. F is the difference between a pair of

nested invariant projections for o(%). (See [5].) Since a(§) is a C*-algebra, F

is in fact reducing for o(S); thus F commutes with a(S). For any s E S and

t E IT we then have

</>(*') = F*o-(if)K= V*o(s)o(t)V

= l^Fo-^o-^K = F*a(i)Fa(/)F

= V*o(s)VV*o(t)V = é(s)é(t) = ir(s)é(t).

A similar equality proves é(ts) = é(t)tr(s).

As an immediate consequence of this lemma we have the following:

Corollary. Let mx and m2 be representations of C*-algebras (£ and %,

respectively. Let é be a completely positive map defined on & ®y *$> and assume

that é(l® b)= I® 7T2(b), for all b E 9>. Then

é(a ®b) = é(a ® 1)(1 ® 7T2(b)) = (1 ® ir2(b))é(a ® 1),

for all a, b E % . If, in addition, we assume that é(a ® 1) = tTx(á) ® 1, for all

a E &, then é = irx ®y tt2.

Lemma 3. Let A and B be unital, generating subspaces of C*-algebras & and

<$, respectively. Let w, E hd(A) and it2 E hd(B). Then mx ®y it2 E hd(A ®

B).

Proof. Let 3C, and OCj be the Hilbert spaces on which trx and tr2 act. Then

77, ®y tt2 acts on %x ® %2. Let é he a completely positive linear mapping of

& ®y % into £(% ® %) such that <?>(x) = irx ®y tt2 (x), for all x E A ® B.

We must prove that é = -nx ®y m2. By the corollary to Lemma 2, it suffices to

prove that é agrees with 77, ®y tr2 on each of the subalgebras 1 ® ÎÔ and

£0 1.
Let F be any rank one projection in t(%2). The mapping

a^(l ® E)é(a® 1)(1 ® E)

is the composition of three completely positive mappings and hence is itself a

completely positive mapping defined on &. Let e he a unit vector in the range

of F and let % be the range of 1 ® E. Then the transformation U defined by

Ux = x ® e, x E DC,, is a unitary mapping of DC, onto DC. Let m(á) =

Uirx(a)U*, a E &. Note that 7?(a) is the restriction to DC of

trx(a) ® E = (1 ® E)(i7x(a) ® 1)(1 ® E).

Since 7? is unitarily equivalent to irx, m E hd(A). Let \p(a) be the restriction to

DC of (1 ® E)é(a ® 1)(1 ® E). Then \p is completely positive and agrees with

•n on A, hence on all of &.

Let x, y E DC, and r E DC2. The paragraph above asserts that, for any

a e &,

(é(a ® l)(x ® r),y ® r) = <(7r,(a) 0 l)(x ® r),y ® r).

(Just let E he the rank one projection on the subspace spanned by r.) Let
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D = <b(a ® 1) - 77,(a) ® 1. So, we have (D(x ® r), y ® r) = 0, for all x,

y E %u r E %2. The polarization formula

4(D(x®r),y®s) = (D(x ® (r + s)),y ® (r + s))

- (D(x®(r-s)),y®(r-s))

+ i(D(x®(r + is)),y ® (r + is))

-i(D(x ® (r - is)),y ® (r - is))

yields (D(x®r), y ® s) = 0, for all x, y E %x and all r, s E %.

Consequently, if z, = 2?*, ® r¡ and z2 = 1fx"y¡ ® s¡, then (Dzx, z2> = 0.

Since zx, z2 run through a dense subset of %x ® %2 and D is bounded, we

obtain D = 0. Thus <p(a ® 1) = T,(a) ® 1, for all a G â. The equality c#l ®

b) = I ® tr2(b), for all b E % is obtained in the same way. This proves the

lemma.

If we keep in mind the fact that if either & or "3J is a GCR algebra then

any irreducible representation of & ®m % is the tensor product of irreducible

representations of & and % we obtain the following theorem.

Theorem. Let A and B be unital, generating subspaces of C*-algebras 6E and

%, respectively. Assume that either & or % is a GCR algebra. Then hd(A ®

B) = bdL4) X hd(B).
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