BOUNDARY REPRESENTATIONS AND TENSOR PRODUCTS OF C*-ALGEBRAS¹

ALAN HOPENWASSER

ABSTRACT. Let A and B be unital, generating linear subspaces of C^* -algebras $\mathscr C$ and $\mathscr B$, respectively. If either $\mathscr C$ or $\mathscr B$ is a GCR algebra, then the set of boundary representations for $A\otimes B$ can be identified with the Cartesian product of the boundary representations for A with the boundary representations for B.

Let \mathscr{C} be a unital C^* -algebra and let A be a linear subspace of \mathscr{C} which contains the unit, 1, and which generates \mathscr{C} as a C^* -algebra. An irreducible representation π of \mathscr{C} is said to be a boundary representation for A if π is the only completely positive extension to \mathscr{C} of the restriction $\pi|A$. (A linear mapping ϕ on \mathscr{C} is completely positive if $\phi \otimes 1_n$ is positive for all $n = 1, 2, \ldots$, where 1_n is the identity mapping on the algebra of $n \times n$ complex matrices.) Boundary representations were introduced by Arveson in [1], where he demonstrated the rôle played by boundary representations in determining the extent to which the order and norm structure on a unital linear space, A, of operators determines $C^*(A)$, the C^* -algebra generated by A.

If $\mathscr Q$ is a commutative C^* -algebra, a boundary representation is essentially just a point in the Choquet boundary of A. If $\mathscr Q$ is commutative, then $\mathscr Q=C(X)$ for some compact Hausdorff space X and each irreducible representation π of $\mathscr Q$ is just point evaluation at some point $x\in X$. Every unital positive linear mapping on $\mathscr Q$ is completely positive and is also just integration with respect to some probability measure μ on X. The assertion that π is the only completely positive extension to $\mathscr Q$ of $\pi|A$ becomes the assertion that point mass at x is the only probability measure μ on X for which

$$\int f(y)d\mu(y) = f(x),$$

for all $f \in A$. But this just says that x lies in the Choquet boundary for A. See [4] for more details.

If A is a unital, generating subspace of \mathfrak{A} , let $\mathrm{bd}(A)$ denote the set of boundary representations for A. Suppose that B is a unital, generating subspace of a second C^* -algebra \mathfrak{B} . Let $\mathfrak{A} \otimes \mathfrak{B}$ denote the algebraic tensor

Received by the editors October 24, 1977 and, in revised form, December 21, 1977.

AMS (MOS) subject classifications (1970). Primary 46L05, 46L15.

¹This research was partially supported by a grant from the Research Grants Committee of the University of Alabama and by a grant from the National Science Foundation.

product of \mathscr{Q} and \mathscr{B} and let $\mathscr{Q} \otimes_{\gamma} \mathscr{B}$ denote the closure of $\mathscr{Q} \otimes \mathscr{B}$ when the latter is provided with the C^* -cross norm γ . The algebraic tensor product $A \otimes B$ of A and B is a unital, generating subspace of $\mathscr{Q} \otimes_{\gamma} \mathscr{B}$ and we may ask about the relation between $\mathrm{bd}(A \otimes B)$ and the two sets $\mathrm{bd}(A)$ and $\mathrm{bd}(B)$.

The question is easy to answer in the commutative case. If $\mathscr{Q} = C(X)$ and $\mathscr{B} = C(Y)$ then $\mathscr{Q} \otimes_{Y} \mathscr{B} = C(X \times Y)$ and

$$bd(A \otimes B) = bd(A) \times bd(B)$$
.

In this paper we shall show that the same result holds anytime one of the factors is a GCR algebra. In the case in which \mathfrak{B} is the algebra, M_n , of $n \times n$ matrices, this result is essentially contained in [3].

If \mathscr{Q} and \mathscr{B} are C^* -algebras, if γ is any C^* -cross norm on $\mathscr{Q} \otimes \mathscr{B}$, and if π_1 (resp. π_2) is an irreducible representation of \mathscr{Q} (resp. \mathscr{B}), then $\pi_1 \otimes_{\gamma} \pi_2$ is an irreducible representation of $\mathscr{Q} \otimes_{\gamma} \mathscr{B}$. We first show that if $\pi_1 \otimes_{\gamma} \pi_2$ is a boundary representation, then so are π_1 and π_2 .

LEMMA 1. Suppose that A is a unital, generating subspace for \mathfrak{R} , that B is a unital, generating subspace for \mathfrak{B} and that $\pi_1 \otimes_{\gamma} \pi_2$ is a boundary representation for $A \otimes B$. Then $\pi_1 \in \mathrm{bd}(A)$ and $\pi_2 \in \mathrm{bd}(B)$.

PROOF. Suppose the contrary. Then one of the factors, say π_1 , is not a boundary representation. Hence there exists a completely positive linear map $\phi_1 \colon \mathscr{C} \to \mathscr{C}(\mathscr{K}_1)$ such that $\phi_1 \neq \pi_1$ but $\phi_1 | A = \pi_1 | A$. (Here, \mathscr{K}_1 is the Hilbert space on which π_1 acts.) By means of the Stinespring representation for completely positive maps [6], one can show that the tensor product of two completely positive maps is again completely positive. Therefore $\phi_1 \otimes_{\gamma} \pi_2$ is a completely positive extension of $\pi_1 \otimes_{\gamma} \pi_2 | A \otimes B$ which is unequal to $\pi_1 \otimes_{\gamma} \pi_2$. This contradicts the assumption that $\pi_1 \otimes_{\gamma} \pi_2 \in \mathrm{bd}(A \otimes B)$.

In general, not every irreducible representation π on $\mathscr{Q} \otimes_{\gamma} \mathscr{B}$ factors as a product $\pi_1 \otimes_{\gamma} \pi_2$ of irreducible representations; if, however, we assume that one of the C^* -algebras is a GCR algebra, then every irreducible representation does factor [2]. Note, also, that since GCR algebras are nuclear, there is a unique C^* -crossnorm on $\mathscr{Q} \otimes \mathscr{B}$, which we denote by $\mathscr{Q} \otimes_{m} \mathscr{B}$. Thus, when one of the factors is GCR, Lemma 1 asserts $\mathrm{bd}(A \otimes B) \subseteq \mathrm{bd}(A) \times \mathrm{bd}(B)$, provided that we identify the pair (π_1, π_2) with the product $\pi_1 \otimes_{m} \pi_2$.

The following lemma is probably known, but no reference for it could be found.

LEMMA 2. Let δ be a unital C*-algebra contained in another C*-algebra $\mathfrak T$ (with the same unit). Let ϕ be a completely positive map on $\mathfrak T$, and let π be a representation of δ such that $\phi|_{\delta} = \pi$. Then $\phi(ts) = \phi(t)\pi(s)$ and $\phi(st) = \pi(s)\phi(t)$, for all $s \in \delta$ and $t \in \mathfrak T$.

PROOF. Let $\phi = V^* \sigma V$ be the Stinespring representation for ϕ (see [6]), and let $P = VV^*$ be the range projection of V. Observe that $P\sigma P$ restricted to S is unitarily equivalent to $\phi|_{S} = \pi$. In particular, $P\sigma P$ is multiplicative on S, so

that P is semi-invariant for $\sigma(S)$, i.e. P is the difference between a pair of nested invariant projections for $\sigma(S)$. (See [5].) Since $\sigma(S)$ is a C^* -algebra, P is in fact reducing for $\sigma(S)$; thus P commutes with $\sigma(S)$. For any $S \in S$ and $t \in T$ we then have

$$\phi(st) = V^*\sigma(st)V = V^*\sigma(s)\sigma(t)V$$

$$= V^*P\sigma(s)\sigma(t)V = V^*\sigma(s)P\sigma(t)V$$

$$= V^*\sigma(s)VV^*\sigma(t)V = \phi(s)\phi(t) = \pi(s)\phi(t).$$

A similar equality proves $\phi(ts) = \phi(t)\pi(s)$.

As an immediate consequence of this lemma we have the following:

COROLLARY. Let π_1 and π_2 be representations of C^* -algebras $\mathfrak A$ and $\mathfrak B$, respectively. Let ϕ be a completely positive map defined on $\mathfrak A \otimes_{\gamma} \mathfrak B$ and assume that $\phi(1 \otimes b) = 1 \otimes \pi_2(b)$, for all $b \in \mathfrak B$. Then

$$\phi(a \otimes b) = \phi(a \otimes 1)(1 \otimes \pi_2(b)) = (1 \otimes \pi_2(b))\phi(a \otimes 1),$$

for all $a, b \in \mathfrak{B}$. If, in addition, we assume that $\phi(a \otimes 1) = \pi_1(a) \otimes 1$, for all $a \in \mathfrak{A}$, then $\phi = \pi_1 \otimes_{\gamma} \pi_2$.

LEMMA 3. Let A and B be unital, generating subspaces of C^* -algebras $\mathfrak R$ and $\mathfrak B$, respectively. Let $\pi_1 \in \mathrm{bd}(A)$ and $\pi_2 \in \mathrm{bd}(B)$. Then $\pi_1 \otimes_{\gamma} \pi_2 \in \mathrm{bd}(A \otimes B)$.

PROOF. Let \mathcal{H}_1 and \mathcal{H}_2 be the Hilbert spaces on which π_1 and π_2 act. Then $\pi_1 \otimes_{\gamma} \pi_2$ acts on $\mathcal{H}_1 \otimes \mathcal{H}_2$. Let ϕ be a completely positive linear mapping of $\mathcal{C} \otimes_{\gamma} \mathcal{B}$ into $\mathcal{C}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ such that $\phi(x) = \pi_1 \otimes_{\gamma} \pi_2(x)$, for all $x \in A \otimes B$. We must prove that $\phi = \pi_1 \otimes_{\gamma} \pi_2$. By the corollary to Lemma 2, it suffices to prove that ϕ agrees with $\pi_1 \otimes_{\gamma} \pi_2$ on each of the subalgebras $1 \otimes \mathcal{B}$ and $\mathcal{C} \otimes 1$.

Let E be any rank one projection in $\mathcal{C}(\mathcal{H}_2)$. The mapping

$$a \rightarrow (1 \otimes E)\phi(a \otimes 1)(1 \otimes E)$$

is the composition of three completely positive mappings and hence is itself a completely positive mapping defined on \mathscr{C} . Let e be a unit vector in the range of E and let \mathscr{K} be the range of E. Then the transformation E defined by E defined by E and E defined by E de

$$\pi_1(a) \otimes E = (1 \otimes E)(\pi_1(a) \otimes 1)(1 \otimes E).$$

Since $\hat{\pi}$ is unitarily equivalent to π_1 , $\hat{\pi} \in \text{bd}(A)$. Let $\psi(a)$ be the restriction to \Re of $(1 \otimes E)\phi(a \otimes 1)(1 \otimes E)$. Then ψ is completely positive and agrees with $\hat{\pi}$ on A, hence on all of \mathscr{C} .

Let $x, y \in \mathcal{H}_1$ and $r \in \mathcal{H}_2$. The paragraph above asserts that, for any $a \in \mathcal{Q}$,

$$\langle \phi(a \otimes 1)(x \otimes r), y \otimes r \rangle = \langle (\pi_1(a) \otimes 1)(x \otimes r), y \otimes r \rangle.$$

(Just let E be the rank one projection on the subspace spanned by r.) Let

 $D = \phi(a \otimes 1) - \pi_1(a) \otimes 1$. So, we have $\langle D(x \otimes r), y \otimes r \rangle = 0$, for all x, $y \in \mathcal{H}_1$, $r \in \mathcal{H}_2$. The polarization formula

$$4\langle D(x \otimes r), y \otimes s \rangle = \langle D(x \otimes (r+s)), y \otimes (r+s) \rangle$$

$$-\langle D(x \otimes (r-s)), y \otimes (r-s) \rangle$$

$$+i\langle D(x \otimes (r+is)), y \otimes (r+is) \rangle$$

$$-i\langle D(x \otimes (r-is)), y \otimes (r-is) \rangle$$

yields $\langle D(x \otimes r), y \otimes s \rangle = 0$, for all $x, y \in \mathcal{K}_1$ and all $r, s \in \mathcal{K}_2$. Consequently, if $z_1 = \sum_{i=1}^{n} x_i \otimes r_i$ and $z_2 = \sum_{i=1}^{m} y_i \otimes s_i$, then $\langle Dz_1, z_2 \rangle = 0$. Since z_1, z_2 run through a dense subset of $\mathcal{K}_1 \otimes \mathcal{K}_2$ and D is bounded, we obtain D = 0. Thus $\phi(a \otimes 1) = \pi_1(a) \otimes 1$, for all $a \in \mathcal{C}$. The equality $\phi(1 \otimes b) = 1 \otimes \pi_2(b)$, for all $b \in \mathcal{B}$ is obtained in the same way. This proves the lemma.

If we keep in mind the fact that if either $\mathscr Q$ or $\mathscr B$ is a GCR algebra then any irreducible representation of $\mathscr Q\otimes_m \mathscr B$ is the tensor product of irreducible representations of $\mathscr Q$ and $\mathscr B$ we obtain the following theorem.

THEOREM. Let A and B be unital, generating subspaces of C^* -algebras $\mathfrak A$ and $\mathfrak B$, respectively. Assume that either $\mathfrak A$ or $\mathfrak B$ is a GCR algebra. Then $\mathrm{bd}(A\otimes B)=\mathrm{bd}(A)\times\mathrm{bd}(B)$.

BIBLIOGRAPHY

- 1. W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.
- 2. A. Guichardet, Tensor products of C*-algebras, Aarhus University Lecture Notes Series, No. 12, Aahrus, 1969.
- 3. A. Hopenwasser, Boundary representations on C*-algebras with matrix units, Trans. Amer. Math. Soc. 177 (1973), 483-490.
 - 4. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966.
- 5. D. Sarason, On spectral sets having connected complement, Acta Sci. Math. (Szeged) 26 (1956), 289-299.
 - 6. W. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, UNIVERSITY, ALABAMA 35486