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ON GROUPOIDS DEFINED BY COMMUTATORS

KI HANG KIM AND FRED W. ROUSH1

Abstract. We study matrices R, L which count the numbers of solutions of

ix = j and xi = j. For slight generalizations of R, L, the relation RL = LR

characterizes associativity of a groupoid. For groupoids defined by group

commutators xyx ~ ly ~ ' the relation RL = LR is valid. In addition one can

study analogues of Green's relations. Any $.-class contains at most four

% -classes in a commutator groupoid.

In this paper we mainly consider groupoids whose underlying set is a

group, with groupoid multiplication x * y = xyx~xy~x. Our interest is mainly

in the matrices R and L such that ry counts the number of solutions of

i * x = j and ly counts the number of solutions of x * / = /.

Definition. Let G be a groupoid. Let t, u he functions from G to a

commutative semiring K with 0. Then R (t) is the matrix (r«) for i,j E G such

that ry = 2/(x), the summation being over all x such that ix = /, if this sum

is defined. And L(u) is the matrix (ly) such that ly = 2 u(x), the summation

being over all x such that xi = j if this sum is defined. Summations over the

empty set are considered to be 0. And we assume 0 + k = k and Ok = 0 for

all k E K.

In this paper we consider the two cases: (i) G finite, K = Z+ u (0); (ii) G

arbitrary, K the Boolean algebra {0, 1). The following proposition is

essentially due to M. S. Putcha [2].

Proposition 1. In the two cases just mentioned, the matrices R(t), L(u)

commute for all t, u if and only if G is associative.

Proof. We have

(R(t)L(u))y=^ t(x)u(y)

where the summation is over all pairs such that ix = k,yk = j for some k, i.e.

all pairs such that y (ix) = j. Likewise

(L(u)R(t))y=^ u(y)t(x)

where the summation is over all pairs such that (yi)x =/. So if G is
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associative R(t), L(u) commute. For the converse, let u, t range indepen-

dently over all functions which send every element of G except one, to zero.

This proves the proposition.

Remark. By choosing t, u to send elements of G to randomly chosen real

numbers, this might give a quick computer test for nonassociativity of a

groupoid.

From here on, we assume both t, u send all elements of G to 1, and we

write R, L for R (t), L(u).

Definition. A group commutator groupoid is a groupoid G whose

underlying set is a group and whose groupoid product is given by xyx~ xy ~ .

Proposition 2. Let G be a group commutator groupoid. Let T be the matrix

of the permutation x -* x~x. Then RT = TR = L. Therefore R, L commute.

Proof. The equation RT = L follows from (ixi~xx~x)~x — xix~li~l. The

identity i~xxix~' = (i~xxi)i(i~xxi)~xi~x implies 77? = RT.

Proposition 3. For each a, b, Rab and Lab are each either zero or the order of

the centralizer of a. The row sums of R, L all equal the order of G. The bth

column sum of R and the bth column sum of L each equal the number of pairs x,

y such that xyx~y~x = b. The trace of R equals the order of G. The trace of L

equals the sums of the orders of the centralizers of those elements a which are

conjugate to a2.

Proof. The entry Rab is the number of solutions of xa ~ xx ~ ' = a ~ xb. This

is either zero or has the same order as the centralizer of a~x. But the

centralizer of a equals the centralizer of a~x. Likewise for L^. The second

and third statements can be observed to be true. For the fourth statement,

note that the trace of R is the sum of the orders of the centralizers of such

that xa~xx~x = e. But this can happen only if a = e. Likewise for L. This

proves the proposition.

Definition. A (left, right) ideal in a groupoid is a subset closed under (left,

right) multiplication. The principal (left, right) ideal generated by an element

is the intersection of all (left, right) ideals containing that element. Two

elements are (%, £, $)-equivalent if and only if they generate the same

principal (right, left, two-sided) ideal. They are %-equivalent if and only if

they are both 91- and £-equivalent. These equivalence relations are called

Green's relations.

Definition. A directed graph is strongly connected if and only if every point

can be reached from every other point by a directed path.

Corresponding to this one can express any graph as a disjoint union of its

strong components. We consider the graph of a matrix to be the graph whose

vertices are the elements of the index set of the matrix, having an edge from i

toy if and only if the (i,j)-entry of the matrix is nonzero.

Proposition 4. For any groupoid, the strong components of the graphs of
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I + R, I + L, (I + R)(I + L) are the <3l, £, %■ -classes. Here I denotes the

identity matrix.

Note that if the elements of G are arranged in the order of an ascending

chain of normal subgroups, the matrices R, L will assume a block triangular

form. In addition nilpotency can easily be detected.

Theorem 5. A finite group G is nilpotent if and only if the matrix R of its

commutator groupoid is nilpotent. Likewise for L.

Proof. Suppose G is nilpotent. Arrange the elements of G in the order of

an ascending central series. Then R, L are lower subtriangular matrices.

Suppose G is not nilpotent. Then by Theorem 14.4.7 of [1] there exist x, p

such that x has order prime to p and x normalizes but does not centralize

somep subgroup Q. Choose Q to be minimal. Then x acts trivially on [Q, Q]

by conjugation. Then x does not act trivially on Q/[Q, Q] by conjugation, or

the group generated by x, Q would have a central series. So x gives a

nontrivial automorphism of Q/[Q, Q]. An endomorphism of Q/[Q, Q] is

given hyy-+ xyx~xy ~', mod[Q, Q]. If this endomorphism were nilpotent, the

automorphism xyx" ' would have order a power of p, which is false. Thus the

endomorphism of Q/[Q, Q] given by y -* xyx~xy ~ ' is not nilpotent. This

implies L is nonnilpotent. Similarly for R.

Theorem 6. If G is a group commutator groupoid, every $-class of G

contains at most two ^-classes and at most two t-classes. If there are two of

either type, they are equal in size. And a fy b if and only if there exists c such

that a <3l c, c £ b if and only if there exists d such that a £ d, d 91 b.

Proof. The classes will not be affected if we use matrices over the Boolean

algebra {0, 1} always, The classes obtained from / + R, I + L, (I + R)(I +

L) are the same as those obtained from

R = I + R + R2+ ...,

L = I + L + L2+...,
CO 00

/?L = 2 R" + 2 R"T.
0 1

Suppose a $ è^ote that R, L, RL are idempotent. Thus there is an edge

in the graph of RL from a to b and one from b to a. Each of these two edges

comes from one of the two summands

00 00

2 R",     S r"t.
0 1

In the first case there is an R edge from one to the other and in the second

case there is an R edge from one to the inverse of the other. We denote the

existence of an edge from one to the other by -». We observe that x -> y ~ ' if

and only if x ~ ' -»y since RT = TR. There are four cases:

Case 1. a -» b, b -> a in the graph of R. Then a <3l b.
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b~x,b^a'x in the graph of R. Then a 91 b'

a   'in the graph of R. Then also a' a.

Case 2. a

Case 3. a -» b, b -

These imply a 91 b.

Case 4. a^>b~x, b -> a. Again a 91 b. Therefore either a lies in the

91-class of b or that of b~x. Thus the f-class of b contains at most two

91-classes. Likewise it contains at most two £-classes.

Suppose there do exist two 9l-classes in some $ -class. Then there exist a, b

such that a j- b but not a 91 b. Thus the situation must be that of Case 2.

And for any a, b in different 91-classes but in the same f -class, this must be

so. Therefore a 91 b~x. Thus for any b in this *y-class, b and b~x will lie in

different 91-classes. Therefore the mapping x—>x_l will be a 1-1 onto

mapping from one 91-class to the other. Likewise for £-classes.

In Cases 1, 3, 4, a 91 b and the last statement is valid. Suppose we are in

the second case. Suppose a —> b ~x by an odd number of edges in the graph of

R, and b~~x ->a by an odd number. Then since L = RT, a £ b. Suppose

a -» b

Let a -+

1 by an even number of 91 edges and b  ' -» a by an even number.

x be the first edge in the sequence from a to b ~x. Then a —> x -» b ~ '

-> a -> x. So a 91 x, x £ b. And a £ x ~ ', x ~x 91 b. If the number of edges

from a to b " ' is even and the number of edges from b ~ ' to a is odd, or vice

versa, we can double the path and obtain one of the two former cases. This

proves the theorem.

Example 1. For the symmetric group on three symbols, L and R are,

respectively

6 0 0 0 0 0
3 3 0 0 0 0
3 0 3 0 0 0
2 2 2 0 0 0
2 2 2 0 0 0
2 2 2 0 0 0

6 0 0 0 0 0
3 0 3 0 0 0
3 3 0 0 0 0
2 2 2 0 0 0
2 2 2 0 0 0
2 2 2 0 0 0

Example 2. It is difficult to find a finite group with a ^-class containing

four different % -classes. Consider the semidirect product of the multiplica-

tive group of numbers of the form m'(n - Tf with the additive real numbers.

Then 1 £ tr - 1 but 1 and -n - 1 are not 91-equivalent. Also 1 91 1 - m but

1 and 1 — 77 are not £-equivalent. Then Theorem 6 implies there are at least

four distinct DC-classes, in the ^-class of 1.

Remark. Many of the results demonstrated here are trivially true for

groupoids defined by Lie algebra commutators.
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