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ON MULTIPLIERS OF SEGAL ALGEBRAS

M. DUTTA AND U. B. TEWARI

Abstract. Let T be a multiplier of a Segal algebra S on a locally compact

abelian group G. We prove that T2(S) is closed if and only if T is a product

of an idempotent and an invertible multiplier. We also show that the

techniques developed in the proof of this theorem can be used to obtain

some other known results.

1. Introduction. Let S be a Segal algebra on a locally compact abelian

group G with dual group T. (For definition and examples of Segal algebras,

see [4].) A bounded linear operator T on S is called a multiplier if for all /,

g E S, T(f*g) = / * (Tg) = (Tf) * g. If T is a multiplier of S then there

exists a bounded continuous function T on T such that for all / G S and for

all y G TTf(y) = f(y)f(y) and ||f H«, < ||r||. The set of multipliers of S,
denoted by M(S), forms a commutative Banach algebra of operators under

the operator norm (for a detailed discussion of multipliers, see [2]).

In §2, we prove the following theorem.

Theorem 1. T2(S) is closed if and only if T is a product of an idempotent and

an invertible multiplier.

In [1], the special case of this theorem for 5 = Ll(G) is proved. The proof

immediately generalizes to all Banach algebras satisfying the special

hypothesis mentioned in §4 of [1]. Our result, obtained by similar methods, is

stronger as there are Segal algebras which do not satisfy this hypothesis. For

example, we can take G = T, the circle group, and take

S=f/GL'(7):     2    \nf\n)\< oo with \[f\\s =\[f]\V(T) +    2    |"/(")|1-
( n= - oo n= -oo )

In §3, we apply the results of §2 to prove the following theorems.

Theorem 2. If T is an isometric multiplier on S then T is surjective and for

allyET,\f(y)\ = l.

Theorem 3. If G is noncompact then the only compact multiplier of S is the

zero operator.

Both of these results have been earlier proved by other methods (see [3]).

2. Before proving Theorem 1, we shall prove a few lemmas.
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Lemma L If I is an ideal in S and T(I) is closed for some T E M (S) then t

is bounded away from zero on W = T \ hull T(I) = T \ (f~'(0) U hull /).

Proof. Since T is continuous, we can take / to be closed without loss of

generality. Now, by the open mapping theorem there exists K > 0 such that

for any/ E T(I) we can find g E I such that/ = Tg and || g\\s < K\\f\\s.

Let y E W. Consider y as an element of S*, the dual of S and let

HyII = Kx > 0. Then there exists /, E S such that fx(y) = 1 and H/,11, <
2/Kx. Choose V c W such that V is a compact neighbourhood of y. (Note

that W is open.) Choose f2 E LX(G) such that/2(y) = 1, ||/2||Li(G) = 1 and/2

is supported in V. This is possible by 2.6.1 of [6]. For / = f2 */„ we have

/ E S, H/11, < ll/all^oll/.H, < 2/*i./(T) * ' and/is supported in K.
Since T(I) is a closed ideal (T(I) is an ideal since T is a multiplier) and/

has compact support disjoint from hull T(I), we get/ E T(I). Hence we can

find g E I, such that/ = Tg and || g\\s < K \\f\\s < 2K/KX. Therefore,

x=f(y) = f(y)g(y)=\f(y)\\g(y)\

<\f(y)\\\y\\Ul<\Tiy)\2K.

Therefore, | f(y)| > 1/2K.
Since y is an arbitrary element of W we conclude that T is bounded away

from zero on W. This completes the proof.

Lemma 2. Let T, T, be in M(S) such that fx(y) = (f(y))~x for all y ET

satisfying T(y) ^ 0. Then T is a product of an idempotent and an invertible

multiplier.

Proof. Let T2 = T2T, E = T, T and K = f " '(0). Then we see that

_ Í 0 on K,

Tl^~ |(f (y))"'     outside K,

and E = Xk<> the characteristic function of the complement of K. Thus E is

an idempotent. Let T' = T + 1 - E, where 1 is the identity operator. It is

easy to check that T2T = TX2T2 = E2 = E, T2E = T2 and T£ = T. There-

fore

T'(T2 + 1 - £) = (T + 1 - £)(T2 4- 1 - E)

= E+T2-T2+T-T+l-E = l.

Hence T' is invertible. Finally we note that T = ET = £(T+ 1 - £) = £T'.

Thus T is a product of an idempotent and an invertible multiplier. This

completes the proof.

Proof of Theorem 1. The proof of 'if part is trivial. For the 'only if part,

let T be a multiplier such that T2(S) is closed. Let K = f_1(0). Then

hull T2(S) = hull T(S) = K. Now T(S) is an ideal and T2(S) = T(T(S)) is

closed. Hence by Lemma 1, T is bounded away from zero on Kc, the

complement of K. Hence K is open and closed and therefore K is a set of
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spectral synthesis. Since T2(S) is closed, we have T2(S) = ¿(A") = {/ G S:

/= 0 on K). But T2(S) c T(S) c k(K) and therefore T2(S) = T(S) =

k(K). Also, if / G k(K) and 7Y = 0 then / = 0 by uniqueness of Fourier

transform. Hence 7", the restriction of T to A:(7() is a continuous bijection of

k(K) onto k(K). Therefore, 7'"' = 70 is continuous. 7\lso, for all/ G k(K)

Tj{y)=\(f(y)ylhy)   «Ä-.

1 0 on #.

Consider Tx = T¿ ° T. Tx is a bounded linear map from 5 into S such that

7^(v)=((f(Y)r7(Y)     on*C'

I 0 on a:.

Thus Tx E M(S) and Tx and 7 satisfy the hypothesis of Lemma 2. Therefore

T is a product of an idempotent and an invertible multiplier and the proof is

complete.

3. Proof of Theorem 2. Let T be an isometric multiplier of S. Then T2(S)

is closed. Thus by Theorem 1,7= ET', where E is an idempotent and 7" is

an invertible multiplier. Let K = Ê ~ '(0). Then K is open and closed. If K is

nonempty, choose / G S such that / ¥= 0 and / is supported in K. Then

Ef = 0 and therefore Tf = 0. But this contradicts the fact that T is an

isometry. Thus K is empty and hence E(y) = 1 for all y E T. Therefore

E = 1 and T = Y is invertible and hence surjective.

To prove the rest of the assertion, let Tx be the inverse of T. Then

7, E M(S) and for all y E T, fx(y) = (f(y))~l. Hence for all y G T,

\f(y)\ < um = 1 and |r(y)|-' = |7,(y)| < ||r,|| = 1. Therefore \f(y)\ = 1
for all y E T and this completes the proof.

Proof of Theorem 3. Let T be a compact multiplier of a Segal algebra S

on a noncompact group G. Let us take any complex number X i=- 0. Then the

range of T - XI, where 1 is the identity operator, is closed by Theorem 4.23

of [5]. Since T — XI is also a multiplier it follows from Lemma 1 that

K = {y 6\T: f(y) = X) = hull((7 - Xl)S) is open and closed. Let k(Kc) =

{/ G S: /(y) = 0 for all y £ K). Consider T, the restriction of T to k(Kc).

Obviously 7" = XI on k(Kc). Now, 7' is compact and therefore k(Kc) is

finite dimensional. Let its dimension be n. Suppose K is nonempty. Since G is

noncompact, T is nondiscrete. Hence any nonempty open set in T has infinite

number of points. Therefore we can find (« + 1) points x,, x2,..., xn+x all

belonging to K and compact neighbourhoods Vx, V2,. .., Vn+X of x,,

x2, ■ ■ ■, xn+x respectively such that V¡ n V, =0 for i ^ j and V¡ c K for

/ = 1, 2, . .., n + 1. Choose/ G 5 for / = 1, 2,...,« + 1 such that/(x,) =

1 and support of / c V¡. Obviously {f¡}"±¡ forms a linearly independent set

of k(Kc). But this contradicts the fact that the dimension of k(Kc) is n.

Hence AT is empty and therefore 7(y) ¥= X for all y G T. Since X is an

arbitrary nonzero complex number we conclude that 7(y) = 0 for all y G T.
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Hence T = 0 and this completes the proof.

4. We note that the arguments of §2 apply to any regular, commutative,

semisimple, tauberian Banach algebra A satisfying the condition that for each

neighbourhood V of any element y of the maximal ideal space r of A there is

a multiplier T of A with Gelfand transform T supported by V, T(y) = 1 and

||T|| < K, for a fixed constant K. This condition is less restrictive than that

mentioned in §4 of [1] and hence as has been noted already in §1, our results

are stronger. For any such Banach algebra Theorem 2 will also hold. As has

been proved in [3], Theorem 2 is actually true for any regular, commutative,

semisimple, tauberian Banach algebra. Theorem 3 can likewise be generalised

to any such Banach algebra satisfying the above condition and whose

maximal ideal space T has no isolated points.
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