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A CLASS OF MAPPINGS CONTAINING ALL CONTINUOUS

AND ALL SEMICONNECTED MAPPINGS

J. K. KOHLI

Abstract. A function /: X -» Y is called i-continuous if for each x E X

and each open set V containing f(x) and having connected complement

there is an open set U containing x such that/(/7) c V. In this paper basic

properties of i-continuous functions are studied; conditions on domain

and/or range implying continuity of i-continuous functions are obtained

which generalize recent theorems of Jones, Lee and Long on semiconnected

functions. Improvements of recent results of Hagan, Kohli and Long

concerning the continuity of certain connected functions follow as a

consequence. Also characterizations of semilocally connected spaces in

terms of i-continuous functions are obtained.

1. Introduction. A function/: X —» Y is called

(i) semiconnected if for each closed and connected set K c Y, /"' (K) is

closed and connected;

(ii) weak semiconnected if for each closed and connected set A" c Y,f~x(K)

is closed;

(iii) connected if f(A) is connected for each connected set A c X; and

(iv) monotone if for each y E Y,f~x(y) is connected.

Several authors have studied semiconnected functions (see Lee [8], Jones

[5], and Long [9]) and weak semiconnected functions are considered in ([6],

[7]). The concepts of continuity and semiconnectedness are independent of

each other and both imply weak semiconnectedness. However, a weak semi-

connected function need not be either continuous or semiconnected. For

example, let Rx and R2 denote the real line endowed with usual and discrete

topologies, respectively, and let X denote the disjoint topological sum of Rx

and R2. Let /: X —> X be the function whose restriction to Rx is the identity

mapping from Rx onto R2 and whose restriction to R2 is the identity mapping

from R2 onto Rx. Then/ is a weak semiconnected function which is neither

continuous nor semiconnected.

2. Basic properties of .v-continuous functions.

2.1 Theorem. Let f: X —> Y be a function from a topological space X into a

topological space Y. The following statements are equivalent:

(a)/ is s-continuous.
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(b) If V is an open subset of Y with connected complement, then f~ '( V) is an

open subset of X.

(c) f is weak semiconnected.

Proof, (a) => (b). If V is an open subset of Y with connected complement,

then for each x E f~x(V), V is a neighbourhood of f(x). Hence there is a

neighbourhood U of x such that f(U) c V. Thus f~x(V) being a

neighbourhood of each of its points is open.

(b) => (a). Let x E X and let V be an open set containing f(x) and having

connected complement. Then f~x(V) is an open set containing x and

f(f~\V)) c V.
(b) => (c). Let K c F be a closed connected set. Then Y - K is an open set

with connected complement and, therefore, f~x(Y — K) = X — f~x(K) is

open. So,/- X(K) is closed in X.

(c) => (b). Let V c y be an open set with connected complement.

Then Y — K is a closed connected set and, therefore /"'( Y — V) = X —

/"'(K) is closed. So,f~x(V) is open in A'.

2.2 Corollary. Let f: X —» Y be s-continuous and injective. If Y is Tx, so is

X.

2.3 Theorem. Let f: X —> Y be a s-continuous, closed function from a normal

space X onto a space Y. If either of the spaces X and Y is Tx, then Y is

Hausdorff.

Proof. Case I. The space y is Tx. Letyx,y2 be any two distinct points in Y.

Then {.y,} and [y2] are closed connected subsets of Y so that by Theorem

2.1, f~x(yx) and f~x(y2) are closed subsets of X. By normality of X, there are

disjoint open sets Ux and U2 containing/"'(y,) and/"'(.y2) respectively.

Since/is closed, the sets Vx = Y - f(X - Ux) and V2 = Y - f(X - U2) are

open in Y. It is easily verified that Vx and V2 are disjoint and contain^, and

y2, respectively. Thus Y is Hausdorff.

Case II. The space X is Tx. Lelf(x) G y be any point. Since the singleton

{x} is closed in X, {/(*)} is a closed subset of Y. So Y is Tx and the proof is

complete in view of Case I.

2.4 Corollary. Every continuous closed image of a normal Tx-space is T2

and hence T4.

Proof. Every continuous closed image of a normal space is normal [2, p.

154].

2.5 Corollary. Every continuous closed image of a compact Hausdorff space

is compact Hausdorff.

2.1 Remark. Theorem 2.3 is false with 'closed' replaced by 'open'. For let X

be the union of the lines y = 0 and y = 1 in the euclidean plane and let Y be
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the quotient of X obtained by identifying each point (x, 0) for x =£ 0, with the

corresponding point (x, 1). The resulting quotient map q: X —> Y is

continuous open, and Y is Tx, but q(f), 0) and q(0, 1) are distinct points of Y

which do not have disjoint neighbourhoods.

2.6 Theorem. Let f: X —» Y be s-continuous and let Y be a locally connected

T3-space. Then f has closed graph.1

Proof. Let (x, y) be any point in X X Y which does not lie in the graph of

/. Then f(x) =£ y. Since Y is T3 and hence T2, there are disjoint open sets Vx

and V2 containing f(x) and y, respectively. Since Y is a locally connected

T3-space, there exists an open connected set V such that y E V c V c V2.

By Theorem 2.1, f~x(V) is closed in X and does not contain x. Since / is

i-continuous, there is an open set U such that x E U c X - f~x(V) and

such that f(U) c Y — V. Therefore U X V contains (x,y) but no point of

G(f). Thus G(f) is closed in X X Y.

2.1 Definition. Let /: X ^> Y be any function. Then the function g:

X -> X X Y, defined by g(x) = (x,f(x)), is called the graph function with

respect to /. There are certain relationships between a function and its graph

function.

2.7 Theorem.2 If f: X —* Y is a function from a connected space X into a

space Y such that the graph function is s-continuous, then f is s-continuous.

Proof. Let x E X and V be an open set containing/(x) such that Y — V

is connected. Then p~'(V) is open in X X Y. Since X and Y - V are

connected, X x (Y - V) = (X x Y) - pÇx(Y) is connected. Thus p~x(V)

is an open set in X X Y having a connected complement. Therefore, there

exists an open set U containing x such that g( U) c Py '( V)- It follows that

PyigiU)) = fiU) C V, so that/is ¿-continuous.

2.8 Theorem. Let f: X -» Y be any function. Then the following statements

are true.

(a) If fis s-continuous and A c X, thenf\A : A —» Y is s-continuous.

(b) If {Ua : a E A ) is an open cover of X and if for each a, fa = f\ Ua is

s-continuous, then f is s-continuous.

(c) If [Fß-. ß E B) is a locally finite closed cover of X and if for each ß,

fß = f\Fß is s-continuous, then f is s-continuous.

Proof, (a) Let U be an open subset of Y with connected complement.

Then/~'(t/) is open and hence (f\A)~x(U) = f~l(U) n A is an open subset

of A.

(b) Let U be an open subset of Y with connected complement. Then

'The referee pointed out that graph is actually strongly closed in the sense of [10].

2The interesting problem that whether the converse of Theorem 2.7 is true remains open and

was raised by the referee.
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/~'(í/)= U{/a~'(L/):  a E A)  and  since  each /„  is 5-continuous,  each

f~x(U) is open in X and sof~x(U) is open in X.

(c) Let F be a closed and connected subset of Y. Then f~x(F) =

U [fß~l(F): ß G B). Since each fß is 5-continuous, each fjf X(F) is closed in

Fß and hence in X. Again, since {F^: ß E B) is a locally finite closed cover

of X, the collection {fß~x(F): ß G B) is a locally finite collection of closed

sets. Thus/" '(F) being the union of a locally finite collection of closed sets is

closed [1, p 22].

2.9 Theorem. Iff: X —> Y is continuous and g: Y -^ Z is s-continuous, then

g »J: X —> Z is s-continuous.

Proof. Let A" be a closed and connected subset of Z. Then g "'(Tí) is

closed and since/is continuous, (g ° f)~x(K) = f~x(g~x(K)) is closed.

2.2 Remark. If / is ^-continuous and g is continuous, then in general g ° /

need not be 5-continuous. For, let X, Y and Z denote the real line endowed

with cofinite topology, discrete topology and usual topology, respectively. Let

f:X-*Y and g: Y —> Z denote the identity maps. Then g°f is not

5-continuous. Thus, in particular, composition of two 5-continuous functions

may fail to be 5-continuous.

2.10 Theorem. Let f: X —» Y be a quotient map. Then a function g: Y —» Z is

s-continuous if and only if g ° f is s-continuous.

Proof. Necessity follows from Theorem 2.9. To prove sufficiency, let U be

an open subset of Z with connected complement. Then

(g°/)"1(í/)=/"l(g-'(í/))

is open in X. Since / is a quotient map, g~x(U) is open in  y so g is

5-continuous.

2.2 Definition [3]. A topological space X is called a saturated space if any

intersection of open sets in X is itself an open set; or equivalently every point

of X possesses a minimum neighbourhood.

2.11 Theorem. Let X be a saturated space and let Y be a locally connected

regular space. Iff: X —> Y is s-continuous, then f is continuous.

Proof. Let jc G X and let V be an open subset of Y containing_/(x). Since

y is regular, there is an open set U such that f(x) G U c U c V. Let

y E Y - U. Since Y is regular, there is an open set Vy containing y such that

V n U = 0. Since Y is also locally connected, there exists a closed connect-

ed neighbourhood U of y such that Uy n U =0. Thus Y - Uy is an open

set containing f(x) and has connected complement. Since / is 5-continuous,

there is an open set N containing x such that f(Ny) c Y - Uy. Let N =

f){Ny: y E Y - U). Now N contains x and since A' is a saturated space, N

is open. Clearly, f(N) c U C V and hence/ is continuous.

2.3 Definition. A topological space X is called semilocally connected if for
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each x E X and each open set U containing x there is an open set V such

that x E V c U and X — V consists of a finite number of components.

2.3 Remark. The above definition of semilocal connectedness differs from

the one that occurs in the literature (see [8]—[11]) in the sense that we do not

necessarily require a semilocally connected space to be a connected T,-space.

Thus every finite topological space as well as every indiscrete space is

semilocally connected.

2.12 Theorem. ///: X -* Y is s-continuous and if Y is semilocally connected,

then f is continuous.

Proof. Let x E X and let V be any open neighbourhood of f(x) = y in Y.

Since Y is semilocally connected, there is an open set N c V containing y

such that Y — Ny consists of a finite number of components Cx, C2, . . . , C„.

For each k = I, . . . , n, Ck is closed and connected so that/~'(Q) is closed

by Theorem 2.1. Therefore, \J"=xf~x(Ck) = A is a closed subset of X and

does not contain a point of f~x(y). So, U = X — A is an open set containing

x and /( U) = Ny c V. Thus / is continuous.

2.13 Corollary (Lee [8], Long [9]). ///: X —> Y is semiconnected and if Y

is semilocally connected, then f is continuous.

2.14 Corollary (Kohli [6]). Let f: X -^ Y be a closed (or open) connected

monotone function and Y and Tx-space. If Y is semilocally connected then f is

continuous.

Proof. It is easily verified that an open (or a closed) connected monotone

function into a T,-space is semiconnected. Therefore, by Corollary 2.13, /is

continuous.

2.4 Remark. Corollary 2.14 generalizes Theorems 1 and 7 of Hagan [4] and

also includes Corollary 2 of [9].

3. Characterizations of semilocally connected spaces. Let (X, t) be a topo-

logical space and let S denote the collection of all open sets whose comple-

ments are connected. Let t* denote the topology on X generated by taking §

as a subbase. Obviously, t* c t. Further it is easily verified that if (A", t) is

T,, or compact, or connected, so is (X, t*). In the sequel that follows, t* will

always have the same meaning as in this paragraph.

3.1 Theorem. The space (X, t*) is semilocally connected.

Proof. Since t* c t, every r-connected set is reconnected. Let % be the

collection of all finite intersections of members of S and let B E %. Then

B = nU\U¡> where each U¡ e § and hence Y - B = U7=,(T - U¡). Since

each Y — U¡ is r-connected, it is reconnected. Thus t* has a base such that

the complement of each basic open set consists of a finite number of

components and so (X, t*) is semilocally connected.

3.2 Corollary. Any topological space X can be condensed onto a semilocally
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connected space Y. Moreover, if X is compact, or connected, or Tx, so is Y.

3.3 Theorem. The space (X, t) is semilocally connected if and only ifr = t*.

Proof. Sufficiency follows from Theorem 3.1. To prove necessity, suppose

that (X, t) is semilocally connected and let x E U. Let U be a T-open set

containing x and such that X — U consists of a finite number of components

C„ . . ., Cn. For each k = 1,2, . . ., n, Ck is closed and connected so that

Y - Ck E § . Thus

n n

H (y-Q)= y- uq= u
k=\ k=\

is a t*-basic open set and hence tct*. So, t = t*.

3.4 Corollary. The operator t -* r* is idempotent, i.e., (t*)* = r for every

topological space (X, t).

3.1 Remark. In general t* need not be either the finest or the coarsest

semilocally connected topology contained in t. For, let %, ^ and 6 denote

the usual, discrete and cofinite topologies, respectively on the real line R.

Now, if (X, t) = (R, 6D), then t' = 6c%; and if t denotes the topology on

R generated by taking {Q ) u % as a subbase, where Q is the set of rationals,

thenr* = % D Q.

3.5 Theorem. Let (X, r) be a topological space. Then the following statements

are equivalent:

(a) (X, t) « semilocally connected.

(b) Every s-continuous function f from a topological space Y into (X, r) is

continuous.

(c) Every semiconnected function f from a topological space Y into (X, t) is

continuous.

(d) The identity mapping lx from (X, r*) onto (X, r) is continuous.

Proof, (a) =>(b) follows from Theorem 2.12 and (b) =>(c) is obvious. The

implication (c) =>(d) follows, since the identity mapping 1^ is semiconnected.

The implication (d)=>(a) is immediate in view of Theorem 3.1 and the fact

that t* c t.
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