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ANALYTICITY OF FUNCTIONS AND SUBALGEBRAS

OF L°° CONTAINING H">

S.-Y. A. CHANG1 AND J. B. GARNETT2

Abstract. Let B be a subalgebra of L°° containing H°°. We give some

necessary and sufficient conditions, expressed in terms of analyticity, for a

function in L°° to belong to B.

1. Let H°° be the algebra of bounded analytic functions on the open disc

D. By Fatou's theorem //°° is a closed subalgebra of L°°, the algebra of

essentially bounded Lebesgue measurable functions on the unit circle C. The

(closed) subalgebras of L°° containing Hx have received considerable

attention recently (cf. D. Sarason [7], [8], S.-Y. Chang [3], [4] and D. Marshall

[6]). The main result of those papers is that each such algebra B is a Douglas

algebra, i.e. B is generated by H °° and

$ = [b:b E Hx is an inner function and b EB).

In this note we characterize the elements of B in terms of their analyticity in

two different ways.

We identify/ G L1 with its Poisson integral

/(*")- A     f    Pr{0-<P)f{<P)d<f>
¿■n   J_„

where Pr(t) = (1 - r2)/(\ - 2r cos t + r2) is the Poisson kernel. For S > 0

we let Gs(f) be the region {rem: \f(rei9)\ > 1 - 8). For each arc / on the

circle with center e" and normalized arc length |/|, we let 51(7) be the region

{/•e'9:|0-r|<|/|/2, 1 -|/|<r< 1}.

We write HX(G) for the set of bounded analytic functions on a region G.

2. The first characterization connects the algebra B to the algebras

Hx(Gs(b)), 0 < Ô < 1, bE% = [b inner: b E B).

Lemma 2.1. Let b(z) be an inner function and let 0 < 8 < 1. Then almost

every e'9 E C is the vertex of a truncated cone lying in Gs(b). Every bounded

harmonic function F(z) defined on Gs(b) has a nontangential limit F(e'e) at

almost every e'6 E C.

Proof. At almost every e'e, b(z) has a unimodular nontangential limit.
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Such a point e'9 is then the vertex of a truncated cone (of arbitrarily large

aperture) inside Gs(b). For any e > 0 and any a > 0, a metric density

argument [9, p. 201] shows there is h, 0 < h < 1, and there is a compact set

E c C such that \C \ E\ < e and such that Gs(b) contains

\e" - z\ \
1 ' <a,\-h<\z\<\\.
\-\z\ J

Now the proof commencing on the bottom of p. 202 of [9] shows that every

bounded harmonic function on §1 has a nontangential limit from within 5L at

almost every point of E. Since e and a are arbitrary the lemma is proved.

Because of the lemma we can state the following

Theorem 2.2. LetfE L°°. Thenf E B if and only if for every e > 0 there is

b E % and 8, 0 < 8 < 1, and there exists F E Hoa(Gs(b)) with nontangential

limit F(eie) such that \\F(ei9) - f(ew)\\ao < e.

Proof. First suppose / £ B. Then / can be uniformly approximated by

functions of the form Eh with E E % and A G //°°. When 0 < 8 < 1,

F(z) = h(_z)/b(z) is in H°°(Gs(b)) and F has nontangential limit h(ei9)/

b(e'9) = b(e'9)h(e'9) almost everywhere. Thus the condition of the theorem is

necessary.

The proof of the converse uses the basic construction from the proof of the

corona theorem.

Lemma 2.3. Let b(z) be an inner function and let 0 < tj < 1. There is a

sequence T, of disjoint rectifiable Jordan curves bounding domains D, c D such

that:

{|6(z)|<i,}cUA- (2-1)

inf \b(z)\ < r,. (2.2)

(2.3) There is 8 = Sir,) < 1 such that T¡ c [\b(z)\ < 5(n)}.

(2.4) Arc length in T = D n U tT¡ is a Carleson measure on D.

See [1], [2] or [10] for detailed proofs of Lemma 2.3.

To conclude the proof of Theorem 1, it suffices to assume that /= F

almost everywhere, where F E Hx(Gs(b)) for some b E 55 and some 8,

0 < 5 < 1. Using the duality Lx/Hx = (H¿)*, we have for n = 1, 2,. ..

dist(/,fi)<AinfJ/-è«/z|

=  sup
g&H'

II «II.*'

±-.   (F(z)b»(z)g(z)dz

Take tj > 1 — 8 and consider the curves T, given by Lemma 2.2. Let

ßr={|z|<z-}\U   Ä.       r<l.
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By (2.2) the region ß, has finite connectivity, and since b(z) is inner,

ñr c Gs(b) by (2.1) when 17 > 1 - 8. Moreover Slr has rectifiable boundary

consisting of

Jr={\z\=r}ndQr

and

*>{|*|<r}n U r,.-

By (2.3) for almost every e'9, re'9 E Jr when  1 - r is small. Hence by

dominated convergence and Lemma 2.1

lim   f F(z)b"(z)g(z) dz = ( F(z)b"(z)g(z) dz.
r-»l   JJ, JC

By Cauchy's theorem

f F(z)bn(z)g(z)dz = -f F(z)b"(z)g(z)dz

with correct orientations. But by (2.3) and (2.4)

/  \F(z)\ \b"(z)\ \g(z)\ ds < sup|F(z)|(ô'(n))',M||g||1,

where M depends only on T. Sending n -» 00 completes the proof.

The theorem or its proof shows that dist(/, B) is the infimum of those e > 0

for which the condition of the theorem remains true.

3. The second characterization of B involves the distances from / to H2,

measured in the Hubert spaces L2(Pro(9 - 90)d9) for points z0 = rQei9° lying

in some region Gs(b), b E B.

For/ G L°°, let

drif = \df/dz\\\ -\z\)dxdy

where 3/9z = {-(d/dx + di/dy). The Littlewood-Paley identity

I //|V/(z)|2log ± dxdy = ± f\f-f(0)\2d6,

where |V/|2 = 19/"/ 3jc j2 -f- |3//9y|2, implies that diif is a finite measure on D.

Theorem 3.1. Whenf G L00 the following conditions are equivalent.

(0/ e B.
(ii) For any e > 0 there is b G % and 8, 0 < 8 < I, such that for all

z0 e Gs(b),

inf     ¿   (|/-g|2i>ro(0-0o)¿0<£. (3.1)
ge//2   -¿w   ^

(iii) For any e > 0 /Tier«? « o G ® 0/10* 5, 0 < «S < 1, such that

fr(G,(fr)n9l(/))   ^
sup  -TT- < e. (3.2)
/ Kl
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Proof. We show (i) => (ii) => (iii) => (i).

Assume (i) holds. Then there is b E 9> and h E Hœ such that ||/ - Eh\\c

< e. For z0 E Gs(b), let g(z) =b(z0)h(z). Then g E H2 and

- f\Sh - 8\ PrÁ9 - 9o) d6<~f- f\b(9) - b(zo)\2Pro(0 - 90)

= \\hL^-\Hzo)\2)<28\\h\\x.

dB

Consequently, (3.1) holds if 8 is sufficiently small.

Now suppose (ii) holds and choose b E % and 8 so that (3.1) holds. We

follow the proof of Lemma 2 of [3]. By Lemma 5 of [3], (3.2) will be proved if

we show that

Pf(<SL(I0)) < e\I0\

for all arcs I0 of the form [\6 — 0Q\ < 1 - r0] where z0 = r0e'9° E Gs(b). Let

w = (z — z0)/(l — Zqz) and let F(w) = f(z) - g(z), where g E H2 is chosen

to attain the infimum (3.1). Then F(w) is conjugate analytic, so that \VF(w)\2

= 2\dF/dw\2. Since .F(O) = 0, the Littlewood-Paley identity gives us

1 •2ir

where w = u + iv. A change of variables then yields

1       7-2ir

log — du dv
\w\

¿jTi/w-iîwrXi»-».)-

-Mi
3i"

log
1 - ZqZ

dx dy,

as dg/dz = 0. When z E %(I0),

1 -Izl
< clog

1     -    ZcyZ

1 -

and hence (3.1) implies that

/yWo)) < C(12~r0) f\f-g\2Proi0 - 0O) dO < ce(l - r0).

Now assume (iii). Let e > 0 and fix b E ® and 8, 0 < 8 < 1, so that (3.2)

holds. We estimate

dist(/, EnHx ) =  sup    ±- (ß"g d9
g^H¿     Z7r J

as in the proof of Theorem 6 of [3] with one small modification. Note that

when g E Hx,

Vf(z)V(b"g)(z)=fx(b"g)x+fy(b"g)y= 2(df/dz)(d(b"g)/dz).

Polarization of the Littlewood-Paley identity then yields



ANALYTICITY OF FUNCTIONS AND SUBALGEBRAS OF L°° CONTAINING H°°     45

From this point one can repeat the proof of Theorem 6 in [3], using (3.2)

instead of the analogous condition on |V/|2(1 - |z|) dx dy, and obtain

dist(/, è"//00) < Ce1/2.

Thus/ G B if (iii) holds and the theorem is proved.

The proof of the theorem contains the following estimates on dist(/, B) for

/ G L°°. Let £,(/) be the infimum of those e > 0 for which condition (ii) is

true and let e2(f) be the infimum of those e > 0 for which condition (iii) is

true. Then

dist(/, B) > c,e¡/2 > c2t\l2 > c3 dist(/, B),

for universal constants c„ c2 and c3. (These inequalities, reading from the left,

follow from the proofs of (i) => (ii), (ii) => (iii), (iii) => (i) respectively.)

Since 3// dz = (3// 3z), the description of B n B given as Theorem 8 in [3]

is an immediate corollary of Theorem 3.1.

Corollary 3.2. /// G L°°, then f G B if and only if for any e > 0 there is

b E % and 8, 0 < 8 < 1, such that

ff |V/f(l-|z|)Ä *><£(/)
•> •/a(/)nc6(*)'

for every arc I.
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