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ENDOHOMEOMORPHISMS DECOMPOSING A SPACE

INTO DISJOINT COPIES OF A SUBSPACE

LIAM O'CALLAGHAN

Abstract. The existence (conjectured by R. Levy in a private

communication) of a space X and an endohomeomorphism, /, of ßX, such

that f[X] = ßX\X is demonstrated. It is shown that if G is one of the

topological groups 2°, Q°, R° or T", where oi < a, then G has a dense

C-embedded subgroup H and an autohomeomorphism, /, such that G is the

union of disjoint sets, A0 and Ax, where for (i,j) = {0, 1} f[A¡\ = Ap and

A i is a union of cosets of H.

The existence (conjectured by R. Levy in a private communication) of a

space X and an endohomeomorphism,/, of ßX, such that/[A'] = ßX\X is

demonstrated. It is shown that if G is one of the topological groups 2a, Q", Ra

or T°, where u < a, then G has a dense C-embedded subgroup H and an

autohomeomorphism,/, such that G is the union of disjoint sets, A0 and Ax,

where for (/',/} = {0, 1} f[A¡] = Aj, and A¡ is a union of cosets of H. These

results, which continue (and duplicate in part) a remark of Glicksberg [G59],

have appeared in [0'C76].

Notation. We denote the nonnegative integers, the first infinite ordinal

and the corresponding countable discrete space by w. The topological groups

2, Z, Q, R and T are (0, 1}, the integers, the rationals, the reals and the circle

group (R/Z), respectively. We denote the domain and the range of a function

/ by Dom / and Rng / respectively. Let / be a function, and let A he a subset

of Dom/. An /-decomposition of A is a pair (A0, Ax} of complementary

subsets of A, such that A¡ n f[A¡] = 0 for / = 0, 1. If in addition the set A

satisfies f[A] = A, then an/-bisection of A is an /-decomposition (A0, Ax)

with/L4n] = Ax and/[/I,] = A0. Otherwise the notation is that of [GJ60] and

[CN74],
Our first result is an application of the Katëtov Lemma on Three Sets of

which we give only a skeletal proof. A detailed proof can be found in [B64],

[K67], [CN74] and [W74].

Lemma 1. Let f be a function with Dom/ D Rng/, and let A be a subset of

Dom/.

(a) Iff2k+X has no fixed points for k = 0, 1, . . . , then A has an f-decompo-

sition.

(b) If f has no fixed points, then A = A0\J Ax \J A2, where {A0, Ax, A2) is a

pairwise disjoint family, and A¡ n f[A¡] =0 for / = 0, 1, 2.
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Proof. Define — by x — y, whenever/"(x) = f"(y) for some nonnegative

integers m and n. Clearly — is an equivalence relation. To produce a

decomposition of the claimed type for A it suffices to produce an appropriate

decomposition of the equivalence class, x/-~ where x ranges over a complete

set of representatives of A. The reader may verify, that in case (a)

[•x]o = {y e x/—: m = n (mod 2), whenever/" (x) = f" (y)}

[x], = [y E x/~: m ^ n (mod 2), whenever/" (x) = f" (7)}

yields an/-decomposition of x/-~-.

A slight modification of this argument proves (b): Should x/— not contain

a fixed point of/2Ar+1 for any nonnegative integer k, then [x]0 and [x], are

defined as above, and [x]2 =0; should x/-~ contain a fixed point of f2k+x,

where /c is minimal for this x, then we choose x, the class representative, to be

one of the (2k + 1) fixed points of f2k + x in this equivalence class, and we

define

[x]o = {y — */«■"»: n = 0 (mod 2), whenever n is minimal with f(y) =

x}\{x}.

Mi = {y ~ x/~~>: n = 1 (mod 2), whenever « is minimal with/"(.y) = x),

[x]2 = {x}.

The verification of the details is left to the reader.

Corollary. Under the hypotheses of case (a):

(i) If n = m (mod 2), whenever x and y E Dom/\Rng/ and f"(x) =

f"(y), then Dom / has an f-decomposition of the form (X,f[X]).

(ii) If Dom f = Rng/, then Dom/ has an f-bisection.

(iii) Let x E Dom/ and let (A0, Ax~) be an f-decomposition of Dom/ then

[x/~ n a0, x/~ n ax) = ([x]0, [x],}.

Proof. For (i): choose, whenever possible, a member of Dom /\ Rng /as

class representative. Then [x]0 D x/-~ n(Dom/\Rng/), so [x], = /[[x]0].

Parts (ii) and (iii) are obvious.

Definition. A subset D of a topological space is said to be strongly

discrete if for each d in D there is a neighborhood, Ud, of d such that { Ud:

d E D } is a pairwise disjoint family.

We note that if D is a strongly discrete subset of ßa, then D is C*-embed-

ded in ßa [CN74], and any one-to-one function, g: y -> D, has an extension/:

ßy —> ßa which is a homeomorphism.

Theorem 1. Let g: a>—>/3co\w be a one-to-one function with strongly

discrete image, and let f: /?w—» ßu\ui be its continuous extension. The space

ßu has an f-decomposition <[X, ßX\X~).

Proof. By a theorem of Frolík [F67] no power of / has a fixed point (if we

do not wish to use this result of Frolík, then all we need do is to add the

condition that g(2n) E cl[2k + 1: k < w} and g(2n + 1) E cl[2k: k < u)
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for all n in w: this prevents each odd power of / from having a fixed point).

There is by the corollary to the Katëtov Lemma a set X such that X 2

Dom/\ Rng/ D to, and (X,f[X]} is an/-decomposition of ßa> = ßX.

This result has an obvious generalization to the Stone-Cech compacti-

fication of an arbitrary infinite cardinal. However, it is not the case that to

construct an example all one needs is a homeomorphism g; X-» ßX\X no

(odd) power of which has a fixed point, which, furthermore, has a continuous

extension /: ßX -» ßX\X, where / is a homeomorphism. We have the

following counterexample.

Let W be the set of countable ordinals with the order topology. It is well

known [GJ60] that ßW — W*-the one point compactification of W. Let

W* = W u { * }. Let Y = W X Il{ W*; 0 < n < a). Clearly ßY = IT.{ W*;
n < u}. Define g; Y -» ßY\ Y as follows:

¿?(Oo, wx, ...» = <*, w0, wx, .. . >.

Then g has a continuous extension / which is defined by the same rule but

with domain ßY, and /is a homeomorphism. But <*,*,...) is a fixed point

off, so ßY does not have an/-decomposition.

It may be worth mentioning that Y has the property that ßY is

homeomorphic to ßY\ Y. Also, if we had uncountably many factors in the

definition of Y, and if g were defined as above, then we would have a

homeomorphism / extending g. This time / would have a set of fixed points,

which would be homeomorphic to ßY.

Definition. Let X = U{X¡; i E I}, let p E X, and let u < y. Then

~2y(p, X) is defined as follows:

Zy(p,X)={yEX:\{iEl:Pl¥=yi}\<y}.

We will write 'S.y(p) when the space X is obvious from the context.

If each of the factors of X is a separable metric space, and if a is

uncountable, then 2a (p) is dense and C-embedded [Cn59].

Observation. Let F be a topological field, and let a be uncountable. The

vector space Fa is then equipped with the product topology. Translation by

<1, 1, . . . > is denoted by /. We observe by the Katëtov Lemma and its

corollary that the space Fa has an /-bisection if and only if F has even

characteristic (including characteristic zero). We can sharpen this result.

Theorem 2. (Glicksberg). Let a be uncountable, and let f be translation by

(I, 1, ... ) on the space 2" regarded as a vector space over the field 2. Then 2"

has an f-bisection (A0, Ax}, where A0 is a dense C-embedded, maximal vector

subspace, M, of 2". So ßM is 2", and the f-bisection has the form <M,

ßM\M}.

Proof. Clearly 2a«0, 0, ...» is a dense vector subspace of 2°, which

misses <1, 1, . . . ). By Zorn's Lemma there is a subspace Af of 2", which is

maximal   with   respect   to   both   missing   <1, 1, . . . >   and   containing



394 LIAM O'CALLAGHAN

2a«0, 0, . . . ». It can be shown that M has the required properties.

Clearly in Theorem 2 M is just a maximal subgroup of 2". The language of

vector spaces is used to emphasize the relation with Theorem 3. The basic

idea of both these proofs is to find some subgroup M of the product F" such

that F" /' M has an appropriate decomposition.

Theorem 3. Let F be a subfield of R. Let a be uncountable, and let f denote

translation by (I, 1, . . . ) on the vector space Fa. Then Fa has an f-bisection

(A0, Axy, where A0 and Ax are unions of cosets of a dense, C-embedded,

maximal subspace of F".

Proof. Arguing as in Theorem 2 we can find a dense C-embedded,

maximal subspace M of Fa, which misses <1, 1, . . . >. Define R, S, A0 and Ax

as follows:

R = U {[2«, 2n + 1) n F: n E Z),

5 = U [[2n + 1, 2rt + 2) n F: n E Z},
A0= M + Ra,and

Ax = M + Sa.

Clearly R and S are complementary subsets of F, and A0 and Ax are as

required.

The group T" has a decomposition similar to the decomposition of

Theorem 3. There does not seem to be a proof along the lines of the proofs of

Theorems 2 and 3. A more elaborate version of the decomposition of

Theorem 3 seems necessary.

Theorem 4. Let E be a dense subgroup of R, which contains 1. Let a be

uncountable, and let f be translation by (A, I, . . . ) on the topological group E".'

Then E" has an f-bisection (A0,AX}, where A0 and Ax are dense and C-

embedded in E".

Proof. Let M be a maximal subgroup of 2" as constructed in Theorem 2.

We define (using the addition of £°) the sets X, Y, V, W, AQ and Ax as

follows:

A- = Sa«0,0,...>,([0, l)nE)a),

y = ([0, i]n E)a\x,
V = X + M + (2Z)a,

W = Y + M + (2Zf,
A0= VU(W+(1,1,...)),

Ax= Wu(V+<l,l,...)).
If x E E", then there is a unique p in 2" and a unique q in (2Z)a such that

x - p - q E ([0, 1) n Ef. Clearly

2a«0, 0, ...>,£a) C X + 2Q«0, 0, .'..>, 2«)

+ 2a«0, 0, . . . >, (2Z)a) Ç V.

Hence V is dense and C-embedded in E. Furthermore the family of sets
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{V, V+(l, I, ...), W, W+(l, 1, ...»

is pairwise disjoint, since the family of sets

{X + M, X + M + (I, I, . . . ), Y + M, Y + M + (I, I, . . . )}

is pairwise disjoint. Since A¡ + <1, 1, . . . ) = Aj for {/,/} = (0, 1), we see

that (Aq, Axy is as required.

Theorem 5. Let G be a dense subgroup of T, which contains — 1 = exp(m').

Let a be uncountable, and let f be translation (multiplication) by < — l,

- I, . . . ) on Ga. Then Ga has an f-bisection (B0, Bx}, where B0 and Bx are

dense and C-embedded in Ga.

Proof. The ath power, H, of the canonical homomorphism, h; R ->T is a

continuous homomorphism from Ra onto T\ Let E he the inverse image of G

under A. Then £ is a dense subgroup of R, which contains 1, such that

h[E] = G. Let A0 and A, be as constructed in Theorem 4. Clearly

H[A0] n H[AX] =0.

Since/l0D2a«0,0,...>,Fa),

H[\((l, !,...>,£«)]- 2„«-l, - 1, . . . >, Ga),

and

ff[2a«0, a... >,2?«]-20«l,l,... >,(?«),

then (B0, Bx) defined by B0 = H[A0], and Bx = //L4,] is as required.

[CO'C79] will contain results of related interest. In particular sharper

characterizations are obtained for first countable, realcompact spaces X of (i)

continuous functions /: X —> ßX and (ii) spaces Y with X c Y c ßX, and

with g[ Y] = ßY\ Y, where g is an endohomeomorphism of ßX.
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