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ENDOHOMEOMORPHISMS DECOMPOSING A SPACE
INTO DISJOINT COPIES OF A SUBSPACE

LIAM O’CALLAGHAN

ABSTRACT. The existence (conjectured by R. Levy in a private
communication) of a space X and an endohomeomorphism, f, of BX, such
that f[X] = BX\ X is demonstrated. It is shown that if G is one of the
topological groups 2%, Q% R* or T*, where w < a, then G has a dense
C-embedded subgroup H and an autohomeomorphism, f, such that G is the
union of disjoint sets, 4y and 4, where for {i,j} = {0, 1} f[4,] = 4;, and
A; is a union of cosets of H.

The existence (conjectured by R. Levy in a private communication) of a
space X and an endohomeomorphism, f, of BX, such that f[X] = BX\ X is
demonstrated. It is shown that if G is one of the topological groups 2%, Q% R*
or T%, where w < a, then G has a dense C-embedded subgroup H and an
autohomeomorphism, f, such that G is the union of disjoint sets, 4y and 4,,
where for {i,j} = {0, 1} f[4,] = A4}, and 4, is a union of cosets of H. These
results, which continue (and duplicate in part) a remark of Glicksberg [G59],
have appeared in [Q’C76].

NortaTioN. We denote the nonnegative integers, the first infinite ordinal
and the corresponding countable discrete space by w. The topological groups
2,Z,Q,R and T are {0, 1}, the integers, the rationals, the reals and the circle
group (R/Z), respectively. We denote the domain and the range of a function
fby Dom f and Rng f, respectively. Let f be a function, and let A4 be a subset
of Dom f. An f-decomposition of A is a pair (4, 4,) of complementary
subsets of 4, such that 4, N f[4,] = for i = 0, 1. If in addition the set 4
satisfies f[4] = A, then an f-bisection of A is an f-decomposition {44, 4,)
with f[A4,] = 4, and f[A4,] = A,. Otherwise the notation is that of [GJ60] and
[CN74].

Our first result is an application of the Katétov Lemma on Three Sets of
which we give only a skeletal proof. A detailed proof can be found in [B64],
[K67), [CN74] and [W74].

LemMma 1. Let f be a function with Dom f D Rng f, and let A be a subset of
Dom f.

(@) If f2*! has no fixed points for k =0, 1, . .., then A has an f-decompo-
sition.

(b) If f has no fixed points, then A = Ay, U A, U A,, where {Ay, A\, Ay} is a
pairwise disjoint family, and A; N f[A,] =D for i =0, 1, 2.
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ProoF. Define — by x — y, whenever f"(x) = f™(y) for some nonnegative
integers m and n. Clearly — is an equivalence relation. To produce a
decomposition of the claimed type for A4 it suffices to produce an appropriate
decomposition of the equivalence class, x/— where x ranges over a complete
set of representatives of A. The reader may verify, that in case (a)

[x]o = {¥ € x/—=: m = n(mod 2), whenever f* (x) = f" (y)}
[x], = {y € x/—: m Z n (mod 2), whenever f" (x) = f" (Y)}

yields an f-decomposition of x/—.

A slight modification of this argument proves (b): Should x/— not contain -
a fixed point of f2**! for any nonnegative integer k, then [x], and [x], are
defined as above, and [x], =; should x/— contain a fixed point of f>**!,
where k is minimal for this x, then we choose x, the class representative, to be
one of the 2k + 1) fixed points of f2*! in this equivalence class, and we
define

[x)o={y — x/—: n=0 (mod 2), whenever n is minimal with f"(y) =

xINA{x}.
[x], = {y — x/—: n = 1(mod 2), whenever n is minimal with f"(y) = x},
[x] = {x}.

The verification of the details is left to the reader.

COROLLARY. Under the hypotheses of case (a):

() If n= m (mod 2), whenever x and y € Dom f\Rng f, and f"(x) =
f™(»), then Dom f has an f-decomposition of the form (X, f[X]).

(ii) If Dom f = Rng f, then Dom f has an f-bisection.

(iii) Let x € Dom f, and let {A,, A,> be an f-decomposition of Dom f, then
{x/=n Ao x/— N A} = {[x]o [x],}-

ProOF. For (i): choose, whenever possible, a member of Dom f\ Rng f as
class representative. Then [x], 2 x/— N(Dom f\ Rng f), so [x]; = fl[x]o)-

Parts (ii) and (iii) are obvious.

DEFINITION. A subset D of a topological space is said to be strongly
discrete if for each d in D there is a neighborhood, U,, of d such that {U,:
d € D} is a pairwise disjoint family.

We note that if D is a strongly discrete subset of Ba, then D is C*-embed-
ded in Ba [CN74], and any one-to-one function, g: y — D, has an extension f:
By = Ba which is a homeomorphism.

THEOREM 1. Let g: w— Bw\w be a one-to-one function with strongly
discrete image, and let f: Bw — Bw\ w be its continuous extension. The space
Bw has an f-decomposition (X, X\ X ).

PrOOF. By a theorem of Frolik [F67] no power of f has a fixed point (if we
do not wish to use this result of Frolik, then all we need do is to add the
condition that g(2n) € cl{2k + 1: k < w} and g2n + 1) € cl{2k: k < w}
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for all n in w: this prevents each odd power of f from having a fixed point).
There is by the corollary to the Katétov Lemma a set X such that X D
Dom f\Rng f D w, and (X, f[X]) is an f~-decomposition of fw = BX.

This result has an obvious generalization to the Stone-Cech compacti-
fication of an arbitrary infinite cardinal. However, it is not the case that to
construct an example all one needs is a homeomorphism g: X — SBX\ X no
(odd) power of which has a fixed point, which, furthermore, has a continuous
extension f: BX — BX\ X, where f is a homeomorphism. We have the
following counterexample.

Let W be the set of countable ordinals with the order topology. It is well
known [GJ60] that SW = W*-the one point compactification of W. Let
W*=Wu{*}LetY=WXI{W*: 0<n < w}. Clearly BY = [I{ W*:
n < w}. Define g: Y — BY \\ 'Y as follows:

8((Wor Wi D) = 3w W,

Then g has a continuous extension f which is defined by the same rule but
with domain BY, and f is a homeomorphism. But {*, *, ... ) is a fixed point
of f, so BY does not have an f~-decomposition.

It may be worth mentioning that Y has the property that BY is
homeomorphic to 8Y\ Y. Also, if we had uncountably many factors in the
definition of Y, and if g were defined as above, then we would have a
homeomorphism f extending g. This time f would have a set of fixed points,
which would be homeomorphic to 8Y.

DEFINITION. Let X =[[{X;: i €I}, let p € X, and let w < y. Then
Z,(p, X) is defined as follows:

S pX)={yeEX:|(i €L:p#y}| <7}

We will write £, (p) when the space X is obvious from the context.

If each of the factors of X is a separable metric space, and if « is
uncountable, then 3, (p) is dense and C-embedded [Cn59].

OBSERVATION. Let F be a topological field, and let a be uncountable. The
vector space F* is then equipped with the product topology. Translation by
(1, 1,...) is denoted by f. We observe by the Katétov Lemma and its
corollary that the space F* has an f-bisection if and only if F has even
characteristic (including characteristic zero). We can sharpen this result.

THEOREM 2. (GLICKSBERG). Let a be uncountable, and let f be translation by
<1, 1,...) on the space 2* regarded as a vector space over the field 2. Then 2*
has an f-bisection (A, A,), where A is a dense C-embedded, maximal vector
subspace, M, of 2°. So BM is 2°, and the f-bisection has the form {M,
BM\ M.

Proor. Clearly 2,(0,0, ... >) is a dense vector subspace of 2% which
misses {1, 1, ... ). By Zorn’s Lemma there is a subspace M of 2%, which is
maximal with respect to both missing <1, 1,...)> and containing
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2,0, 0, ... ). It can be shown that M has the required properties.

Clearly in Theorem 2 M is just a maximal subgroup of 2°. The language of
vector spaces is used to emphasize the relation with Theorem 3. The basic
idea of both these proofs is to find some subgroup M of the product F* such
that F*/ M has an appropriate decomposition.

THEOREM 3. Let F be a subfield of R. Let a be uncountable, and let f denote
translation by {1, 1, ... on the vector space F*. Then F* has an f-bisection
(Ag, A,>, where A, and A, are unions of cosets of a dense, C-embedded,
maximal subspace of F*.

PROOF.- Arguing as in Theorem 2 we can find a dense C-embedded,
maximal subspace M of F®, which misses {1, 1, ... ). Define R, S, Ay and 4,
as follows:

R=U{[2n,2n+ 1) N F: n € Z},

S=U{[2n+1,2n+2)Nn F:n € Z},

Ay= M + R° and

A =M+ S°
Clearly R and S are complementary subsets of F, and 4, and A4, are as
required.

The group T* has a decomposition similar to the decomposition of
Theorem 3. There does not seem to be a proof along the lines of the proofs of
Theorems 2 and 3. A more elaborate version of the decomposition of
Theorem 3 seems necessary.

THEOREM 4. Let E be a dense subgroup of R, which contains 1. Let a be
uncountable, and let f be translation by (1, 1, . .. ) on the topological group E*.’
Then E° has an f-bisection {A,, A,), where Ay, and A, are dense and C-
embedded in E°.

PRrROOF. Let M be a maximal subgroup of 2* as constructed in Theorem 2.
We define (using the addition of E®) the sets X, Y, V, W, A, and 4, as
follows:

X=2,00,...>00, )N E)),

Y =(0,1]n E)*\X,

V=X+M+ (2Z),

W=Y+ M+ (2Z),

A=V uW+<,1,...)),

A,=Wu(W+{,1,...)).

If x € E°, then there is a unique p in 2* and a unique ¢ in (2Z)* such that
x—p—4q€(0,1)n E). Clearly

2.((0,0,... ) E%) C X + 2,((0,0,." .5, 2
+2,(0,0,...) 7)) C V.

Hence V is dense and C-embedded in E. Furthermore the family of sets
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(v, V+{L,1,... W, W+, 1,...))
is pairwise disjoint, since the family of sets
(X+MX+M+{(,L... 5 Y+MY+M+(,1,...))

is pairwise disjoint. Since 4, + <1, 1,...) = A; for {i,j} = {0, 1}, we see
that {4y, 4,) is as required.

THEOREM 5. Let G be a dense subgroup of T, which contains —1 = exp(i).
Let a be uncountable, and let f be translation (multiplication) by <{ — 1,
=1,...) on G* Then G* has an f-bisection {B,, B,), where B, and B, are
dense and C-embedded in G°.

Proor. The ath power, H, of the canonical homomorphism, #: R - T is a
continuous homomorphism from R* ohto T°. Let E be the inverse image of G
under h. Then E is a dense subgroup of R, which contains 1, such that
h[E] = G. Let Ay and A4, be as constructed in Theorem 4. Clearly

HLAo) 1 H[A,] =,
Since 4, 2 2,(<0,0, ... ), E%),

H[Z,((L 1. . 5 E* )] =Z,({(~1, = 1,...),G*),
and

H[Z,(£0,0,... ), E*] =Z,(L, 1,... ), G*),

then (B, B,) defined by B, = H[A,), and B, = H[A,] is as required.

[CO’CT79] will contain results of related interest. In particular sharper
characterizations are obtained for first countable, realcompact spaces X of (i)
continuous functions f: X — BX and (ii) spaces Y with X c Y c BX, and
with g[Y] = BY \\ 'Y, where g is an endohomeomorphism of BX.
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