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THE SEMILATTICES WITH

DISTINGUISHED ENDOMORPHISMS

WHICH ARE EQUATIONALLY COMPACT

SYDNEY BULMAN-FLEMING, ISIDORE FLEISCHER AND KLAUS KEIMEL

Abstract. We consider universal algebras (S; {A} U E)in which £ is a set

of endomorphisms of the semilattice (5; A )• It is proved in this paper that

such an algebra is equationally compact iff (i) every nonempty subset of S

has an infimum, (ii) every up-directed subset of S has a supremum, (iii) for

every s E S and every up-directed family (d¡) in S the equality 5 A V d¡ =

V s /\d¡ holds, (iv) for each / G E, f(/\s() = A/0s.) holds for every
family (j,) in 5, and (v) for each/ 6 E,f(\Jd¡) = V JW) holds for every
up-directed family (a)) in S. In addition, it is shown that every equationally

compact algebra of this type is a retract (algebraic) of a compact, Hausdorff,

O-dimensional topological one. These results reduce to known ones for

semilattices without additional structure.

By a semilattice with distinguished endomorphisms (abbreviated here to

SENDO) we shall mean a universal algebra (S; {A} U E) where A is a

binary operation on S, E is a set of unary operations on S, and in which the

following laws hold:

x Ay = y Ax,

x A(y A2) = (xAy)Az,

x A x = x,

f(x Ay)= f(x) A Ay)   for each/ E E.

Thus, a SENDO is a semilattice together with an additional set of unary

fundamental operations selected from the endomorphisms of that semilattice.

A universal algebra (A ; F) is called equationally compact if every system of

equations with constants in A (i.e. equalities between pairs of terms built up

from variables and elements of A using the operations in F-see [4] for more

details), every finite subsystem of which has a solution in A, has a common

solution in A. Among the previous results on equationally compact semilat-

tices are the following:

(1) (Grätzer and Lakser [5]). A semilattice (S; A ) is equationally compact

iff every nonempty subset of S has an infimum, every up-directed subset of S

has a supremum, and the equality s A V d¡ = V s A d¡ holds for all s e S

and all up-directed families (d¡) in S.

(2) (Bulman-Fleming [1]). Every equationally compact semilattice is a
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retract (in the algebraic sense) of a compact, Hausdorff, O-dimensional

topological semilattice.

The review article of Taylor [7] provides a valuable guide to the literature

on equational compactness, and should be consulted for further background

material.

The following theorem states that results (1) and (2) above hold for every

SENDO. It contains both these results as special cases (taking E to be

empty), and is being used by the first two authors to pursue similar questions

in richer ordered structures (e.g. pseudocomplemented semilattices, taking E

to be {**}; see [3]).

Theorem. Let (S; {A} U E) be a SENDO. Then the following conditions

are mutually equivalent:

(i) (S; {A} U E) is equationally compact.

(ii) (a) (S; A ) is equationally compact as a semilattice (see the description (1)

above); and in addition

(b) for all families (s¡) in S, all up-directed families (d¡) in S, and for all

f E E the equalities

/(A s,) = A/U) andf{\J 4) = V/W)
hold. (Both sides of each equality exist, by (a).)

(iii) (S; {A} U E) is a retract (in the algebraic sense) of a compact,

Hausdorff, O-dimensional topological SENDO.

Proof, (iii) —» (i). That every retract of a compact, Hausdorff topological

(and hence equationally compact) algebra is equationally compact was noted

by Mycielski [6].

(i) -^ (ii). (a) follows since the semilattice terms, and hence equations, occur

among the SENDO ones. To verify the first equalities of (b), observe that for

each / £ E the system

(A/to) < A*)} u {*<*,-}
(which is of course equivalent to a system of SENDO equations with

constants in S) is finitely solvable in 5 (by the meet of the occurring s,'s), and

thus by (i) is solvable in S. The existence of a common solution c yields

A/U)</(c)</(A*,);

the opposite inequality follows from the order-preserving character of /. The

second equalities of (b) are proved dually, via the systems

{4 <*}u {/(*)< V/W)}-

(ii) -» (iii). By an ideal of a conditionally complete A-semilattice (such as

the semilattice of (ii)) we mean a nonempty initial segment / of S, every pair

of whose elements has a common upper bound in S, with the smallest such

being contained in J. The set I(S) of all ideals of (S; A ) is closed under

arbitrary intersection, and hence (I(S); n ) is a (complete) subsemilattice of
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(2s; n ) into which (S; A) is (completely) semilattice embedded via sh>(j],

the principal ideal determined by s E S. For J E I(S) and/ G £ we define

f(J) to be the set {s E S\s < f(j) for some/ G J).f(J) is clearly an initial

segment of S; and if x and y belong to f(J), then x < /(/) and y < f(k) for

certain elements /, k E J. Since j\J k exists in J and because /(/ V k) is a

common upper bound of /(/) and f(k), x\J y exists in S and belongs to f(J).

Thus, /(/) G I (S), and it is easily shown that / is an endomorphism of

(I(S); n ) for each/ G E. Hence, (I(S); {n} U {/|/ G E}) is a SENDO,

and one can verify that the principal ideal map defined earlier is a SENDO

embedding. Furthermore, the map J\-^\J J from I(S) to S is a SENDO

retraction of this embedding; indeed,

V J A V K = V {/ A k\j E J, k E K) = V J n K

for any J, K E I(S), using the meet-continuity condition of (1), and

ÄVJ)~VÄJ)-Vf(J)
for any/ G I(S), by the join condition in (ii)(b).

It remains only to prove that (I(S); (n) U {f\f E E}) is a compact,

Hausdorff, O-dimensional SENDO. To this end, recall that a subbasis for the

product topology on 2s (2 with the discrete topology) consists of sets of the

form {T G 2s\s E T}, for fixed s E S, and their complements, and that,

with respect to this topology, (2s; n ) is a compact, Hausdorff, O-dimensional

topological semilattice. The same is true of (I(S); n ) with respect to the

induced topology, for I(S) is closed in 2s. Indeed, a T E 2s is not an element

of I(S) only if either for some a < b E S we have b E T and a G T; or, for

some a, b G T, a\J b exists and a V b G T; or, for some a, b E T, a V b

fails to exist in S. An open neighborhood of T disjoint from I(S) is obtained

in each of these cases by choosing, respectively, {R E 2s\b G R, a G R),

{R E 2s\a, b G R, a V b G R), and {R G 2s|a, ¿> G R}. Finally, we show

that, for each/ G ¿s,/is continuous; i.e. that/-'(A,) and f~x(Ds) are open

for each 5 G S, where Ns = {J E I(S)\s G J}, and Ds = 7(5) - A,. If {/ G

S\s < /(/)} = 0, then /"'(A,) = 0 and /"'(/*,) = I(S) are both open. If

{/ G S|í < /(/)} ¥=0,letd=/\ (/ G 5|i < /(/)}; then since 5 G f(J) iff
d E J (by the meet condition in (ii)(b)), it follows that f~x(Ns) = Nd and

f~x(Ds) = Dd, which are again both open.

Notes. (1) I(S) in the above theorem is none other than the closure of the

image of S in 2s, so the present construction affords an alternative view to

that in [1].

(2) Calling an algebra l-variable compact if it satisfies the criterion for

equational compactness given above restricted to systems of equations involv-

ing one and the same variable (say x), we see from examination of the above

proof that the equationally compact SENDOs are exactly the l-variable

compact ones.

(3) The authors are indebted to the referee for pointing out that their
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original proof (dealing only with the case of a single distinguished endomor-

phism) applies equally well to the present theorem, and also that this theorem

has the corollary that a SENDO (S; {A} U E) is equationally compact iff

for each f E E the SENDO (S; A, f) is. This is to be contrasted with the

situation for unary algebras, in which the equational compactness of an

algebra with two unary operations cannot be inferred from that of both its

mono-unary reducts; such an algebra has been constructed by G. H. Wenzel

[8] (and is quoted in [2]).

(4) The terms which are equated in forming the equations under considera-

tion may involve not just the endomorphisms in E individually but also their

arbitrary finite compositions; put another way, the same terms would be

obtained if E were enlarged to be the submonoid it generates in the endomor-

phism monoid on which it operates. More generally, one could consider the

structure (analogous to that of a module over a ring) of a semilattice on which

a monoid operates as endomorphisms. Inspection of the above proof of

(ii) —> (iii) will show that both the embedding and the retraction there con-

structed preserve the additional structure of those functional compositions

with respect to which E is closed.
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