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FIXED POINT THEOREMS FOR MULTIVALUED

APPROXIMABLE MAPPINGS

P. S. MILOJEVIÓ

Abstract. In this paper we introduce several classes of multivalued

approximate mappings and develop the fixed point theory for these

mappings acting in a cone. As an important special case we have the theory

of /t-ball-contractive perturbations of strongly pseudo-contractive and

accretive mappings.

1. Introduction. Since the early 1960's several important classes of nonlinear

noncompact mappings have been introduced among which are monotone

type, condensing and A -proper mappings. The first two classes of mappings

have been extensively studied also in the multivalued case by many authors,

while the class of multivalued A -proper mappings has been first extensively

studied in the author's thesis (1975) and his subsequent work and then jointly

by the author and Petryshyn (see, e.g., [7], [8], [9]). It turns out that

multivalued mappings play an important role in the theory of evolution

equations, variational inequalities, contingent ordinary, partial differential

and integral equations, optimal control theory, etc.

The purpose of this paper is to introduce and study several new classes of

multivalued approximable mappings acting in a cone. A portion of these

results pertaining to Py-compact mappings have been obtained in the author's

Ph.D. thesis [7]. All our results are of the constructive nature as defined

below. Applications of these results to boundary value problems for

differential equations will be given in a subsequent paper.

2. Fixed point theorems for approximable mappings. We begin this section

by introducing the classes of mappings to be studied in the sequel. Let A' be a

normed linear space and {X„} a sequence of oriented finite dimensional

Banach spaces such that dim X„ -* oo as « —> oo. Suppose that for each «

there exists a linear mapping Vn from Xn into X such that for some constant

C, > 0, \\Vnx\\ < C,||*|| for all x in X„ and all «. The pair {X„, Vn) is

referred to as an approximation scheme for X.

Definition 1. If Xn c X, Pn: X -> X„ is a continuous linear projection onto

X„ such that Pnx -* x in X as « -+ oo for each x in X and Vn is the identity
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injection of X„ into X, then the triple of sequences T = {X„, V„, Pn} is said to

be a projectionally complete scheme for X.

Such a scheme always exists if X has a Schauder basis. Our first class of

multivalued mappings is given by

Definition 2. A multivalued mapping T: D c X -> 2X is said to be

approximately compact (Ay-compact for short) with respect to the scheme

{*n,  Vn) if

(1) there exists a sequence of upper semicontinuous mappings {Tn} from

Dn c Xn into CK(Xn) = the family of all nonempty compact and convex

subsets of Xn;

(2) there exists y > 0 such that, if for some positive p > y and a sequence

(xnJxni G D„k) with ||x„ || < M for all k and some M > 0, we have that

vnk(ynk - M**) -*/ as k ~* °° in * for someA e rn*(*n*) and/ in X, then

there exist a subsequence {xnj } and x0 G X such that F% (x„t ) -»• x0 in A'

and/ G P(x0) - px0.

When Definition 2 holds with / given in advance, we say that T is

Ay-compact at f.

Definition 3. We say that T: D c X -> 2X is projectionally compact (P -

compact for short) w.r.t. a projectionally complete scheme T =,{Ar„, Vn, Pn)

if r, T„ = P„T and £>„ = D n Xn satisfy all the conditions in Definition 2.

Moreover, if condition (2) holds only for p = 1, T — I is said to be .4-proper

w.r.t. r.

Remark. Py-compact single-valued mappings were introduced by

Petryshyn [10] and by Milojevic [7] in the multivalued case. A slight variant

of the definition of A,-compact mappings at 0 in the single-valued case was

given in Lees-Schultz [6].

In [7] we have shown that if T: D c X -> 2X is either ball-condensing or

¿-contractive, generalized contractive or monotone, then T is P,-compact.

Moreover, perturbations of Py -compact mappings by compact multivalued

ones are also Py -compact. We shall also need the following special case of

Proposition 2.1 in [8].

Example 1 [8]. Let X be a Banach space with a projectionally complete

scheme T = [Xn, Vn, P„), \\Pn\\ < 1, T: X-+X continuous, surjective and

a-stable, i.e. for some c > 0, \\PnTx - PnTy\\ > c\\x - y\\ for all x, y in Xn

and n > 1 and F: D c X ^> X demicontinuous and ¿-ball-contractive [17]

with k < c or ball-condensing if c = 1. Then T + F is ,4-proper. In particu-

lar, as T we can take a c-strongly accretive map, i.e. (Tx - Ty, x - v)+ =

sup{(7x - Ty, u)\u E J(x - y)} > c\\x - y||2, x, y E X, where / is the

normalized duality map.

By a cone K c X we mean a closed subset of X such that ax + ßy E K

whenever x, y G K and a > 0, ß > 0. We denote by P(0, r) and P„(0, r) the

open balls in X and X„ respectively centered at the origin and of radius r;

dK(B n /0 denotes the boundary of B relative to K.

Our first fixed point result for positive /^-compact mappings is given by
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Theorem 1. Let X be a Banach space, K and K„ cones in X and X„

respectively, D c X and Dn c X„ open_ and bounded subsets containing the

origin of X and Xn respectively and T: D n K^> 2K Ay-compact at 0 with Tn:

D„ n K„ ^ CK(K„). Suppose that {D„} is uniformly bounded, i.e., there

exists an M > 0 such that \\x\\ < M for all x E D„ and all n, and that Tn

satisfies the Leray-Schauder condition on 9^ (At D Kn), i.e., for all large «

(p.) ax £ Tn(x) for all x E dK (Dn n Kn) and a > p for some positive

w > y.

Then the equation px E T(x) is feebly approximation solvable, i.e., for

sufficiently large n, each equation px E T„(x) has a solution x„ E Dn n Kn and

there exists a subsequence {xnJ such that F^(x^) -> x0 with ¡ixQ 6 T(x0). If

the equation ¡xx E T(x) is uniquely solvable, then it is strongly approximation

solvable in the sense that the entire sequence Vn(xn) —» x0 with fix0 E T(x0).

Proof. For a large « define a mapping 77„: [0, 1] x (Dn n Kn) -> CK(Kn)

by 77„(f, x) = t/pT„(x). It is easy to see that 77„ is u.s.c. compact and

x & Hn(t, x) for all x EdK(D„ n K„) and / G [0, 1] and by the homotopy

theorem for the generalized fixed point index [2] i^(\/pTn, Dn) = 7/^(0, Dn)

= 1, where Ô is the zero mapping. Hence, for all large « there exists

xn E Dn n K„ such that ¡ixn E Tn(xn). Since \\x„\\ < M for all « and V„(yn -

pxn) — 0 for y„ E Tn(xn) with ujc„ = y„, by the /f^,-compactness of T at 0

some subsequence V„(x) -> x0 with fix0 E T(x0). Since || K„(xn)|| < C71||jcn||

< CXM, x0 E B(0, CXM). Arguing by contradiction, the second assertion

follows easily from the unique solvability.   □

Theorem 2. Let X, K and Kn be as in Theorem 1 and T: K^>2K Ay-compact

at 0 with T„: K„^> CK(K„) such that:

(1) there exists a C2 > 0 such that \\V„(x)\\ > C2\\x\\ for all n and all

x EX„;

(2) there exists an r0 > 0 such that T satisfies the Leray-Schauder condition

(p) on dK(B(0, r) n K) for all r E [r0, Cxr0/C2] and some positive jti > y;

(X) there exists a C3 > 0 such that if Xx E T„(x) for some x E

dK(B„(0, r0/C2) n K„) and all n, then X < C3.

7«f?« the equation px E T(x) is feebly approximation solvable in

B(0, Cxr0/C2) n K with approximate solutions lying in Bn(0, r0/C2) n Kn and

is strongly approximation solvable if uniquely solvable.

Proof. In view of Theorem 1, it suffices to show that Tn satisfies the

Leray-Schauder condition on dK (Bn(0, rQ/C2) D Kn) for all large «. We

proceed by contradiction. Suppose that for some sequences {x„ \x„

EdKJB(0,r0/C2) n K„k)} and {AJ\ > p) we have \x„k E Tnk(xJ. By
(X) we may assume that \ —>X E [u, C3] which, together with ||jc„ || =

r0/C2, implies that

II Vnk {\Xnk - K)ll = W - A| • || V% (xnk)\\ < \\   - X\ ■ Cxr0/C2 -» 0
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theorem iK^((l/p)Tn, U„) = ¡¡^((X/p)Tn + Xhn, U„) =£ 0. Thus, there exists

xx G Un such that xx E (l/p)Tnxx + Xhn for each X > 0. Take Xk -» oo and

observe that Xkh„ G (x^ - (l/p)TnxXk) with A¿||A,,|| -» oo as A:-» oo. This

contradicts the boundedness of (/ - (l/p)Tn)(U„) and consequently,

'x„((1/V)7,n. un) = 0- Next> usinE the homotopy P„(i, x) = (i/ju.)P„(x), x G

Dn, we get that_//Cn((l/w)r„, /)„) = 1 and by the additivity theorem

iK((l/p)T„, U„ \ Dn)= - 1. Thus, for all large n there exists x„ G (U„ \ D„)

n K„ such that /ix„ G Tn(xn). Since ||x„|| < Mx for all n, the ^-compactness

of T at 0 imply that some subsequence Vn (xn ) -» x0 with iix0 G P(x0). By

condition (1), x0 =£ 0.   □

The following result provides some conditions on T and Tn which imply

conditions ( ju,) and ( ßn).

Theorem 5. Let X, K and Kn be as in Theorem 1 and T: K^>2K be

Ay-compact with Tn: Kn -> CK(Kn). Suppose that conditions (1), (2) and (X) of

Theorem 2 hold and that there exists an P0 > Cxr0/C2 such that for each

R G [P0, CXR0/C2] we have

(ß) there exists 0 ¥= h0 E K such that x £ (l/u)T(x) + ßh0 for all x

EdK(B(0,R)n K)andß > 0;

(t) there exist a C4 > 0 and 0 j= A„ G K„ with Vn(hn) -> A0 such that if

x E (\/p)T„(x) + rhjorx Gd^(P„(0, Pq/Cj) n KJ and all n, then t < Q.

Then the equation px G P(x) is feebly approximation solvable in

PÍO.C.Po/C^NPíO.ro).

Proof. As in Theorem 2 we get an n0 > 1 such that T„ satisfies the

Leray-Schauder condition (p) on dK(Bn(0, r0/C2) n K„) for each n > n0. To

show that (/?„) of Theorem 4 holds on 9^(P„(0, R0/C2) n K„) for all

n > nx (> n0), we argue by contradiction. If such an n, did not exist, we

could find {x„X G 9^(P„t(0, R0/C2) n K„k)} and {ß„k > 0} such that

x„t G (l/p)T„k(x„k) + ß„khnk. By (t) we can assume that ß„k -» ß E [0, C4]

and let ^ G 7^(x„t) be such that x„k = (l/p)y„k + ß^. Then V^y^ -

("Xn,) = ~ ^n^nS^n) ~* ~ M/^o» and by the v4y-compactness of T, some

subsequence V^x^J -> x0 with - pßh0 E T(x0) - px0 and P0 < ||x0|| <

CXR0/C2 by the properties of {Vn}. Thus, x0 G (l/p)T(x0) + yS/i0 with

ß > 0 and P0 < ||x0|| < CXR0/C2, in contradiction to (/?) and consequently,

an n, with the above property exists. The conclusion of our theorem now

follows from Theorem 4. Moreover, since the approximate solutions x„ G

P„(0,P0/C2)\p:„(0,r0/C2), we have rQ < C2\\xn\\ < ||Kn(x„)|| < C,||xJ| <

CXR0/C2 and consequently, the solution x0 of px E T(x) satisfies r0 < ||x0||

< CXR0/C2.   D
As a consequence of Theorems 4 and 5, we have

Corollary 6 [7]. Let X be a Banach space with a projectionally complete

scheme Y, K c X a cone and Dx c D2 c X two open and bounded sets with

0 G /),. Suppose that T: D2 n Ä"-»2* is Py-compact with PnT: D2 n Kn -^
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Corollary 1 with p. > I, the equation Tx + Fx = px isf.a. solvable.

(b) If kx = 1 - k with k < 1 in (a) and also (pi - T - F\D n K) is

closed, the equation Tx + Fx = fix is solvable.

(c) 7« particular, if T = I - A in (a) (or (b)) with A : X —> X c-strongly

accretive, k < c or F is ball-condensing if c = 1 (or k = c with c > 0),

(I - A - F)(K) c K and I - A - F satisfies conditions (1) and (2) of

Corollary 1 vw'iTi ju = 1 (and (A + F)(D n K) is closed), then Ax + Fx = 0 is

f.a. solvable (solvable).

In case when D does not contain 0, we have

Theorem 3 [7]. Let X be a Banach space with a projectionally complete

scheme T and D c X open and bounded. Suppose that T: D -» 2X is Px-

compact with P„T: D n X„ -* CK(Xn) u.s.c. and satisfies:

(1) if for some x0 E D, X(x - P„x0) G PnT(x) - P„(x0) for some x G37)„

and all large n, then X < C for some C > 0;

(2) a(x — x0) G T(x) — x0for x EdD and a > 1.

Then the equation x E T(x) is feebly approximation solvable.

The proof of this theorem is based on the degree theory for multivalued

compact mappings. The single-valued case of Theorem 3 is a slightly correc-

ted version of Theorem 4.4 in [13]. In particular, we have

Corollary 5. Let X, D and T be as in Theorem 3, ||¿»„|| < 1, T: X -> X and

F: D-^X as in Corollary 4 (a) (or (c)) and T + F(I - A - F) satisfies

conditions (1) and (2) of Theorem 3 with p. = 1.

Then the equation Tx + Fx = x (Tx + Fx = 0) isf.a. solvable.

This result could be also extended to cover the cases (b) and (c) with

k = c > 0 in Corollary 4.

Finally, we now provide some results involving nonzero solutions of

px E T(x).

Theorem 4. Let X, K, K„, D and Dn be as in Theorem 1 and condition (I) of

Theorem 2 hold. Let U c X and U„ C Xn be open and such that D c U,

B„(0, r) c D„ C U„ for some r >_0 and {Un) uniformly bounded by some

constant Mx > 0. Suppose that T: Un K^>2K is Ay-compact at 0 and satisfies

condition (p.) of Theorem 1 on 9^(7>„ n Kn) and for each large n

( ß„) there exists 0 =£ hn E Kn such that

x G (\/p)Tn (x) + ßh„   for all ß >0 and x E 3^ ( U„ n K„ ).

Then the equation px G T(x) is feebly approximation solvable in U n K \

{0}.

Proof. We first show that for all large « the fixed point index iK ((l/p)T„,

U„) = 0. Suppose that for some large «, iK ((\/p)Tn, Un) ¥= 0 and define 77„:

[0, 1] X (U„ n Kn)->CK(K„) by 77„(,, x) = (l/»7> + tXh„ with X > 0.
Then x G 77„(/, x) for t G [0, 1] and x EdK(U„ n Kn) and by the homotopy
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as k -> oo. By the /^-compactness of T at 0, a subsequence ^(j)(^(1)) -* ^o

with Ax0 G T(x0), and the properties of Vn imply that r0 < ||x0|| < Cxr0/C2,

in contradiction to (2). The conclusions of our theorem now follow from

Theorem 1 by taking P(0, rjC2) and P„(0, r0/C2) as D and D„.   Q

Remark. Condition (X) in Theorem 2 is satisfied if for each real number P

there is a constant C(R) > 0 such that \\u\\ < C(R) for all u E Tn(x) with

||x|| = R,x E Kn and all n.

Remark. When K = X, K„ = Xn, p = 1, D and Z)„ are balls and T and P„

single-valued, Theorems 1 and 2 were proved by Lees-Schultz [6] for their

/1,-compact mappings and extend a theorem of Petryshyn [10]. We add that

their arguments required the convexity of D and Dn.

Corollary 1 [7]. Let X be a Banach space with a projectionally complete

scheme T = {X„, V„, P„}, K c X_a cone, K„ = K n X„ and D c X open and

bounded with 0 G D. Let T: D n K->2K be Py-compact at 0 with PnT:

D n Kn -+ CK(X„) u.s.c. and P„(K) c Kfor all large n. Suppose that:

(1) Tsatisfies the Leray-Schauder condition (p) on dK(D n A');

(2) P„Tsatisfies condition (X) of Theorem 2 on 9^ (A, D K„)for all large n.

Then the equation px E T(x) is feebly approximation solvable in D n K and

strongly approximation solvable if uniquely solvable.

As consequences of this result we just mention here the following ones

(many others can be found in [7]).

Corollary 2 [7]. Let X be a reflexive trx-Banach space, K, D and T as in

Corollary 1. Suppose that T: K-* CK(K) is a generalized contraction (i.e., for

each x E K there exists a(x) G (0, 1) such that 8(Tx,Ty) < a(x)\\x - y\\ for

all x,y E K, where 8 is the Hausdorff distance induced by the norm of X) and

C: D -* CK(K) demiclosed and compact. Then, if T + C satisfies condition (p)

on dK(D n K) for some p > 1, the equation px E T(x) + C(x) is feebly

approximation solvable and is strongly approximation solvable if uniquely

solvable.

Corollary 3 [7]. Let X be a reflexive mx-Banach space and T: X -> CK(X)

a generalized contraction. Then for each f E X the equation f E x - Tx is

feebly approximation solvable in B(0, rf) with rf = max{||u + /||: vE

T(0)}/(1 - a(0)).

For the single-valued case with K = X and T: X -> X or T: D-* D see [1]

and the references therein. Moreover if T is ¿-strict contractive, k < 1,

Corollaries 2 and 3 hold without the reflexivity of X (cf. also [14]).

Corollary 4. (a) Let X, K, D and T be as in Corollary 1, ||P„|| < 1, T:

X -> X continuous k-strongly pseudo-contractive, i.e. (Tx — Ty, x — y)_ =

inf{(7x - Ty, u)\u E J(x - y)} < ¿||x - v||2/<"- x,y in X, with T(K) C K

and F: D n K -> K continuous and kx-ball-contractive with kx < 1 - k or

ball-condensing if k = 0. Then, if T + F satisfies conditions (1) and (2) of
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CK(Xn) u.s.c. and P„(K) c K for all large n. Suppose also that T satisfies

conditions (p) and (X) on dK(Dx n K) and 3^(7), n Kn) respectively and

conditions (ß) and (t) on dK(D2 n K) and dK (D2 n Kn) respectively. Then the

equation px E T(x) is feebly approximation solvable in (D2 \ Dx) n K.

Remark. Theorem 4 is valid if condition (2) holds on dK ( Un n Kn) and

condition (ß„) holds on dK(Dn n K„), while Theorem 5 is also valid if

condition (ß) holds on dK(B(0, r) n K) for each r E [r0, Cxr0/C2], (t) holds

on 3^(7^(0, r0/C2) n Kn), (p) holds on 3^(5(0, R) n K) for each 7? G [7?0,

CXR0/C2] and (X) holds on dK(Bn(0, R0/C2) n Kn). The same observation

applies to Corollary 4. For some existence results for positive single-valued

T'-compact mappings see [4], [5] (see also [17], [2] and the references therein).

In particular, Corollary 6 is applicable to the mappings considered in

Corollary 4.

Analyzing the proofs of Theorems 1 and 4, we see that just the solvability

assertion for px E T(x) still holds for the following larger class of mappings.

Definition 4. A multivalued mapping T: D c X -» 2X is said to be

pseudo-Ay-compact if condition (1) of Definition 2 holds and there exists

y > 0 such that if for some positive p > y and a sequence {*nJ*nt G D^}

with ||x„J| < M for all « and some M > 0 we have that F"„t(y„4 - px„k) = 0

for somey„4 G Tnk(x„k), then there exists x E D such that px E T(x).

If T = {Xn, Vn, Pn) is a projectionally complete scheme for X, then we can

take P„T as Tn, in which case we obtain the so-called G-mappings of

Figueiredo [3] with T single-valued and p = 1. Various examples of such

mappings (some of which are not Px -compact) can be found in [3]. We add

that for quite many of these examples one can show that the above sequence

{x„t} in Definition 4 has a subsequence weakly converging to a solution of

px G T(x) (see [12], [8] where a related notion of pseudo v4-properness is

considered). Finally, using the degree theory, one can establish the following:

Theorem 6. Let X and T be as in Corollary 4, T: X -» X continuous and F:

B(0, r) c X —> X demicontinuous and k-ball-contractive such that either (I —

T - F)(dB) C Bor(Tx + Fx, u) > Ofor u G J (x), x E dB.

(a) If T is surjective, astable and either k < c or F is ball-condensing if

c = I, the equation Tx + Fx = 0 isf.a. solvable.

(b) If Te = T + el is surjective for e > 0, T and Te are astable with ce> c

(ct is the constant of a-stability of Te), k = c and (T + F)(fi) is closed, then

Tx + Fx = 0 is solvable.

(c) If Te is astable and surjective for e > 0 with ce->0 as t^O, Fis

compact and (T + F)(B) is closed, then Tx + Fx = 0 is solvable.

Remark. As T and F in Theorem 6 one can take the mappings A and F

considered in Corollary 4 (c) or T = I — A with A and F as in Corollary 4(a)

and (b) with either (Ax + Fx, u) < ||x||2 for u E J(x), x G 35 or (7 - A -

F)(dB) c B. Here and in all above results one can allow F to be multivalued.



72 P. s. milojevic

This theory of fc-ball-contractive perturbations of (strongly) pseudo-contrac-

tive and accretive mappings extends the corresponding theory of Browder [14]

involving compact perturbations. Detailed proofs of these and other results

will be given elsewhere. Various surjectivity results for ball-condensing

perturbations of these mappings can be found in [8], [15], [16].
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References

1. P. M. Fitzpatrick, On the structure of the set of solutions of equations involving A-proper

mappings, Trans. Amer. Math. Soc. 189 (1974), 107-131.

2. P. M. Fitzpatrick and W. V. Petryshyn, Fixed point theorems and the fixed point index for

multivalued mappings in cones, J. London Math. Soc. (2) 12 (1975), 75-85.

3. D. G. de Figueiredo, Fixed point theorems for nonlinear operators and Galerkin ap-

proximations, J. Differential Equations 3 (1967), 271-281.

4. G. M. Goncarov, On some existence theorems for the solutions of a class of nonlinear operator

equations, Math. Notes 7 (1970), 137-141.

5. J. D. Hamilton, Noncompact mappings and cones in Banach spaces, Arch. Rational Mech.

Anal. 48 (1972), 153-162.
6. M. Lees and M. H. Shultz, A Leray-Schauder principle for A-compact mappings and the

numerical solution of non-linear two-point boundary value problems, Numerical Solutions of

Nonlinear Differential Equations (Proc. Adv. Sympos., Madison, Wis., 1966), Wiley, New York,

1966, pp. 167-179.

7. P. S. Milojevic, Multivalued mappings of A-proper and condensing type and boundary value

problems, Ph.D. Thesis, Rutgers Univ., New Brunswick, N.J. (May 1975).

8. _, A generalization of Leray-Schauder theorem and surjectivity results for multivalued

A-proper andpseudo A-proper mappings, Nonlinear Anal., Theory, Methods and Applications 1

(1977), 263-276.
9. P. S. Milojevic and W. V. Petryshyn, Continuation theorems and the approximation-solva-

bility of equations involving multivalued A-proper mappings, J. Math. Anal. Appl. (3) 60 (1977),

658-692.
10. W. V. Petryshyn, Iterative construction of fixed points of contractive type mappings in Banach

spaces, Numerical Analysis of Partial Differential Equations (CI.M.E. 2° Ciclo, Ispra 1967),

Edizioni Cremonese, Rome, 1968, pp. 307-339.
11._, On nonlinear P-compact operators in Banach spaces with applications to constructive

fixed-point theorems, J. Math. Anal. Appl. 15 (1966), 228-242.
12. _, On the approximation-solvability of equations involving A-proper and pseudo-A-

proper mappings, Bull. Amer. Math. Soc. 81 (1975), 223-312.
13. W. V. Petryshyn and T. S. Tucker, On the functional equations involving nonlinear

generalized P-compact operators, Trans. Amer. Math. Soc. 135 (1969), 343-373.

14. F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,

Proc. Sympos. Pure Math., vol. 18, part 2, Amer. Math. Soc, Providence, R.I., 1976.

15. P. S. Milojevic, On the solvability and continuation type results for nonlinear equations with

applications. I, Proc. Third Internat. Sympos. Topology and Appl., Belgrade, 1977.

16. _, Fredholm alternatives and surjectitiity results for multivalued A-proper and conden-

sing mappings with applications to nonlinear integral and differential equations (submitted).

17. R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential

equations. II, J. Differential Equations 14 (1973), 360-394.

Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada KIN

9B4


