
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 73, Number 1, January 1979

THE GEOMETRY AND THE LAPLACE OPERATOR

ON THE EXTERIOR 2-FORMS

ON A COMPACT RIEMANNIAN MANIFOLD

GR. TSAGAS AND C. KOCKINOS

Abstract. A compact, orientable, Riemannian manifold of dimension n is

considered, with the Laplace operator acting on the exterior 2-forms of the

manifold. Examining the spectrum, Sp2, of the Laplace operator acting on

2-forms, the question is raised whether Sp2 exerts an influence on the

geometry of the Riemannian manifold.

To answer this question, after some preliminaries, two compact, orient-

able, equispectral, i.e., having the same Sp2, Riemannian manifolds are

considered in §3. (We note, in particular, that equispectral implies that the

two manifolds are equidimensional.) Assuming further that the second

Riemannian manifold has constant sectional curvature, the paper exhibits

all the dimensions, commencing with 2, for which the two Riemannian

equispectral manifolds have the same constant sectional curvature. In par-

ticular, this implies that for certain dimensions, which are explicitly stated,

the Euclidean /i-sphere is completely characterized by the spectrum, Sp2, of

the Laplacian on exterior 2-forms.

Next, two compact, orientable, equispectral, Einsteinian manifolds are

considered. (Again, equispectral implies equidimensional.) Assuming that

the second Einsteinian manifold is of constant sectional curvature, the paper

exhibits all the dimensions for which the two Einsteinian equispectral

manifolds have equal constant sectional curvature. In particular, taking the

second manifold to be the standard Euclidean sphere, the paper classifies

Einsteinian manifolds, which are equispectral to the sphere, by calculating

all the dimensions for which the Einsteinian manifold is isometric to the

sphere. In short, if one of the Einsteinian manifolds is the sphere, then for

certain dimensions, equispectral implies isometric.

In §4, compact, equispectral, Kählerian manifolds are considered, and

additional conditions are examined which determine their geometry. Study-

ing two compact, equispectral, Kählerian manifolds, and again assuming

that one of the manifolds is of real, constant, holomorphic, sectional

curvature, the paper exhibits all the dimensions for which the two manifolds

have equal real, constant, holomorphic, sectional curvatures. As a particular

case, the paper classifies all the dimensions for which complex projective

space, with Fubini-Study metric, is completely characterized by the

spectrum, Sp2, of the Laplacian acting on exterior 2-forms.

The calculations were performed by utilizing an electronic computer.

1. Introduction. Let (M, g) be a compact, orientable, Riemannian manifold

of dimension n. Let Ak(M) be the set of all exterior A>forms on M, where
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k = 0, 1, . . ., n. (We also use the notation k G [0, n].) For k = 0, we obtain

the set A°(M) of all differentiable functions on M.

Let A = - (dS + 8d) be the Laplace operator which acts on the exterior

algebra of M,

A(M) = A°(M) © A'(M) © ••• © A"(M) = © Ak(M)       (k E [0, n])

as follows:
A: A(M) -* A(M),   A: Ak(M) -> Ak(M),

A: ah^A(a) = -(Sd + d8)(a)-8d(a) - dS(a), Va G Ak(M).

If the exterior A>form is such that Aa = Xa, where X G R, then a is called a

Â:-eigenform, (or simply a /c-form), and X the eigenvalue associated with a.

The set of eigenvalues associated with the exterior k-forms is called the

spectrum of A on Ak(M), and is denoted by Spk(M, g). Thus

Spk(M, g) = {0> Xlk = • • • = Xu > A2), - • • •

= Kk >Kk >  •   > -co}

where each eigenvalue is repeated as many times as its multiplicity, which is

finite and the spectrum Spk(M, g) is discrete, since A is an elliptic operator.

The spectrum, Spk(M, g), exerts an influence on the geometry of (M, g).

The purpose of the present paper is to study the relation of Sp2(Af, g) on the

geometry of (M, g).

2. Let (M, g) be a compact, orientable, Riemannian manifold of dimension

n, and consider a chart (U, tp) on M, so as to obtain a local coordinate system

(x1, . . . , x"), in terms of which the metric g, using the Einstein convention,

may be expressed as g\U = g0dx'dxJ. Let w be an exterior 2-form on M.

Locally,

w\U = Wjjdx' A dxJ   (where ;' <j G[ 1, ni).

Next, let A be the Laplace operator on the exterior 2-forms A2(M) on (M, g).

A: A2(M) -* A2(M),   A: w^A(w)

such that the components Aw(U)hl, h < I, where h, l G [1, n], are given by

Ml/)« - -ff^V,.*;« + whqE? + wqlE2+\wpqRff

where P/ = g'vEvs, Rff = g">gvclRwM. Again, the Einstein convention is used.

The components Evs and R,M axe known.

The spectrum of A for A2(M) is given

Sp2(M, g) = {0 > \u = • • • = Xxa > A2>2

= X21 > X32 > ■ ■    > -oo}.

In order to study the influence of Sp2(Af, g) on the geometry of (M, g), we
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need the Minakshisundarum-Pleijel-Gaffney asymptotic expansion given by

f eK,' „ 2 (4trt)-"/2(aoa + aU2t +■■■ + a^t") + 0(t"-/2)
k=\ 7>0

7->0

where a02, aX2, a22, . . . are numbers which can be expressed by

ai2 = f ui2dM,       i = 0, 1,2, ... ,
■> M

where <7A7 is the volume element of A7, and

ui2:M^>R,       i = 0,1,2,...,

are functions which are local Riemannian invariants. These can be expressed

by the curvature tensor, its associated tensors, and their covariant derivatives.

Some of these have been computed [4],

«o,2 = ( 2 )vol(M) = «(« - l)/2 Vol(A/), (2.1)

a, 2 = («2 - 13« + 24)/2 f S dM, (2.2)
•'M

"2,2 = T^fM[Hn2-25n+\20)S2

- 2(n2 - 181« + 1080)|£|2

+ 2(«2 - 31« + 240)|7v|2] dM,        (2.3)

where 7?, E, and S are the curvature tensor field, the Ricci curvature, and the

scalar curvature of (M, g), and |7?|, \E\, respectively, are the norms of 7?, E,

with respect to g.

Proposition 2.1. Let (M, g) be a compact, orientable, Riemannian manifold

of dimension 2. Then the spectrum Sp2(M, g) determines the Euler-Poincaré

characteristic x(M) of M.

Proof. Formula (2.2) for « = 2, gives

al2= f SdM. (2.4)
J M

Let x(^0 De me Euler-Poincaré characteristic of the two-dimensional

manifold (M, g). This is given by the Gauss-Bonnet formula

1
' JM

From (2.4) and (2.5), we conclude that

X(M) = ¿ ( SdM. (2.5)

Remark 2.2. Formula (2.3) for n = 4, takes the form

1
^ f (90S2 - 372\E\2 + 132\R\2) dM. (2.6)' M



112 GR. TSAGAS AND C. KOCKINOS

The Euler-Poincaré characteristic x(^) of (M, g), for dimension 4, is given

by

X(M) = -J-j f [S2 - 4\E\2 +|P|2] dM. (2.7)
32tt jm

From (2.6) and (2.7), we obtain

360a22 - 2880tt2x(A/) = f [ - 12\E\2 + 42|P|2] dM. (2.8)

Since, the second member of (2.8) is not a topological invariant, we

conclude that a22 is not a topological invariant.

Problem 2.3. Let (M, g) and (M',g') be two compact, orientable,

Riemannian manifolds. If Sp2(M, g) = Sp2(M', g'), is (M, g) isometric to

(M',gy.
The answer to this problem is negative. This is a consequence of the

following counterexample (J. Milnor [3]).

There exist two lattices L and L' in R16 such that

Sp°(R'VL, gjL) = Sp°(R16/L', gJL) (2.9)

where g0 is the Euclidean metric in R16.

Relation (2.9) implies that

Sp2(Ri6/L,g0/L) = Sp2(R16/L',g0/L').

But, (R16/Lig0/L) is not isometric to (Rl6/L', g0/L').

From the relation Sp2(M, g) = Sp2(A/', g'), we conclude that

(i) dim(M) = dim(M'),

(ii) Vol(M) = Vol(M'),

(iii) b2(M) = b2(M').

That is, the second Betti numbers are equal, since b2(M) is the multiplicity of

0 in Sp2(A/, g).

3. We consider two compact, orientable, Riemannian manifolds (M, g) and

(A/', g'), for which we further assume that

Sp2(A/,g) = Sp2(A/',g')- (3.1)

We study special conditions, which taken together with (3.1), determine the

geometry of (M, g).

Theorem 3.1. Let (M,g) and (M',g') be two compact, orientable

Riemannian manifolds with Sp2(A/, g) = Sp2(A/', g'), (which implies that

dim(M) = dim(M') = n). If n = 2, 3, 6, 7, 14 or n E [17, 178], then (M, g) is
of constant sectional curvature k, if and only if (M', g') is of constant sectional

curvature k', and k = k'.

Proof. Let C, G be the Weyl conformai curvature tensor field and the

Einstein tensor field, respectively, on (M, g). The components (CiJkl) and (G0)



«2,2 = ¿J [ô.iq2 + Qi\G\2 + Q3S2] dM (3.6)

exterior 2-FORMS on a compact riemannian MANIFOLD 113

of C and G, respectively, with respect to (x',..., x") are given by

Cijki - *!/*/ - a-{Ejkg„ - Ej,gik - g^ - guEik) + ß(gjkgi, - gßgik)S,

(3.2)

where a = l/(« - 1), ß = l/(« - 1)(« - 2) and

Gy-Eç- ygiJS, (3.3)

where y = 1/«.

From (3.2) and (3.3), we obtain

|C|2=|7v|2-4|7J|7(" -2) + 252/(« - 1)(« -2), (3.4)

\G\2=\E\2 - S2/n. (3.5)

Formula (2.3) by means of (3.4) and (3.5) takes the form

1

) JM~

where

Ö, = 2(«2 - 31« + 240), (3.7)

& = 8(n2 'n3l_"2+ 240) - 2(«2 - 181« + 1080), (3.8)

= 4(«2-31«-1-240) _ 2(«2 - 181« + 1080) 2 _
*3 «(« - 1) « v y

(3.9)

By assumption, the Riemannian manifold (A/', g') has constant sectional

curvature k'. Therefore, for (A/', g') we have C" = 0, G' = 0, and formula

(3.6) in this case becomes

ai2 = ^fMQ3(S')2dM'. (3.10)

From (3.1), (3.6), and (3.10), we obtain

/ (ßiiq2 + Qi\G\2 + Q3S2)dM=f   Q3(S')2dM'. (3.11)■> M •>M'

Now if « = 3, 6, 7, 14 or « G [17, 178], we have

(2, > 0,    Q2> 0,    Q3 > 0. (3.12)

From the relation a, 2 = a\2 by means of (2.2); we have

f SdM = f  5"(7A7' (3.13)
•'M •'AÍ'

which, since S' = constant, implies

f S2dM > f (S'fdM'. (3.14)
•'A/ Jm'

From (3.11), (3.12), and (3.14) we conclude that \C\2 = \G\2 = 0, which

gives C = G = 0. Therefore, the Riemannian manifold (A/, g) has constant
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sectional curvature k. Finally, the relation (3.11) implies k = k'. The case

n = 2 is obtained from the fact that Sp2(A/, g) = Sp2(Af, g') implies

Sp°(A/, g) = Sp°(A/', g') and the results in [2].   Q.E.D.

An immediate consequence of the above theorem is the following

corollary:

Corollary 3.2. The Euclidean n-sphere (S", g), for n = 2, 3, 6, 7, 14, or

n G [17, 178], is completely characterized by the spectrum of the Laplacian A for

exterior 2-forms.

Theorem 3.3. Let (M, g) and (AT, g') be two compact, orientable, Ein-

steinian manifolds with Sp2(A/, g) = Sp2(A/', g'), (which implies that dim(M) =

dim(AZ') = n). If n E [2, 7], n = 14, or n > 17, and (A/', g') has constant

sectional curvature k', then (M, g) has constant sectional curvature k, and

k = k'.

Proof. The assumption that (M, g) is an Einsteinian manifold implies

G = 0, and therefore (3.6) takes the form

«2,2 = v^ö/jö.iq2 + Q3S2) dM. (3.15)

If n G [3, 7], n = 14, or n > 17, we have

ß, > 0,    03 > 0. (3.16)

From (3.10), (3.15), and (3.16), we conclude |C|2 = 0, which implies C = 0.

Therefore, the Einstein manifold (M, g) has constant sectional curvature k.

From (3.14), we have k = k'.

Comment. The case for n = 2 follows trivially from the definitions. From

the above theorem, we have

Corollary 3.4. Let (M, g) be a compact, orientable, Einstein manifold

whose dimension is n. IfSp2(M, g) = Sp2(S", g0), where (S", g0) is the standard

Euclidean sphere, and n G [2, 7], n = 14, or n > 17 then (M, g) is isometric to
(Sn, g0)-

4. Let (M, g) and (AT, g') be two compact, Kählerian manifolds for which

we assume that

Sp2(A/,g) = Sp2(M',g'). (4.1)

We study special conditions which together with (4.1) determine the geome-

try on (A/, g).

Theorem 4.1. Let (M,g,J) and (M',g',J') be two compact Kählerian

manifolds with Sp2(A/, g) = Sp2(A/', g'). If n = real dim(M) then for n = 2,

6, 8, 14 or n G (n = 2m\m E [9, 94]}, (A/, g, h) is of real constant holomor-

phic sectional curvature h, if and only if, (A/', g', h') is of constant holomorphic

sectional curvature h', and h = W.

Proof. We introduce the Bochner curvature tensor field B on (A/, g, J),
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whose components (Bijkl) with respect to the local coordinate system

(x1, . . . , x") are given by

Bijkl =  Rijkl - <X*(Ejkgil ~  Ejl8ik + Eil8jk -  EikSjl +  EjrJkJ« - EjrJlJik

+ JjkEirJ[ - JjtEirJl - 2Ekrj;jij - 2EirJJJkl)

+ ß*( gjkEi, - gjiStk + JJkJu - Jplk - 2JklJ^S (4.2)

where a* = l/(« - 1) and ß* = \/(n + 2)(« + 4).

From (4.2) we obtain the following formula

|fi|2=|7?|2- 16|£|2/(« + 4) + 8S2/(« + 2)(« + 4). (4.3)

Formula (2.3) by means of (3.5) and (4.3) takes the form

*2-2 = 72^/JPi|jB|2 + P^ + P3S2) dM (4-4)

where

7>, = 2(«2 - 31« + 240), (4.5)

P2 = -2(«2 - 181« + 1080) +     32     («2 - 31« + 240), (4.6)

J», = 5(«2 - 25« + 120) - 2 («2 - 181« + 1080) + i^JllkLtM
3       v '     «v ' «(« + 2)

(4.7)

If « = real dim(A7), then for « = 6, 8, 14 or « E {« = 2m|m E [9, 94]}, we

have

Px > 0,    P2> 0,   P3 > 0. (4.8)

If we assume that the Kahler manifold (M', g', J') has constant holomor-

phic sectional curvature h', then relation (4.4) takes the form

*-£/,«*■>'*''■ <49)

From (4.1), we obtain that aX2 = a'X2 implies

f SdM = f   S' dM' (4.10)
Jm jm'

and that a2,2 = «2,2 implies

f (PX\B\2 + P2\G\2 + P3S2) dM=[  P3(S')2dM'. (4.11)
JM JM'

Since the holomorphic sectional curvature h! of (A/', g', J') is constant,

(4.10) implies

[ S2dM > ( (S'fdM'. (4.12)
¿M •>M'

Relation (4.11) by means of (4.8) and (4.12) gives \B\2 = 0 and \G\2 = 0,

which imply B = 0 and G = 0. That is, (M, g, J) has constant holomorphic

sectional curvature «. From (4.10) we obtain « = «'. The case « = 2 is
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obtained with the same technique as in Theorem 3.1.

An immediate consequence of the above theorem is the following corollary.

Corollary 4.2. The complex projective space (Pm(C), g0, /0) with Fubini-

Study metric g0, and real dimension n such that n = 2m = 2, 6, 8, 14 or

n G {n = 2m\m G [9, 94]}, is completely characterized by the spectrum of the

Laplacian on the exterior 2-forms.

Acknowledgement. Many thanks are due to Raymond E. Orth, Jr. who

checked the calculations for Qx = Px, Q2, Q3, P2, P3, by running them

through a computer from n = 3 to n = 1000. Orth found that Qx = P, is

always positive, for n integral, except for two zeros which occur at n = 15 and

n = 16. Q2 assumes positive values for n = 3, and n G [6, 178], and becomes

negative beginning with 179. It is also negative at n = 4, 5. Q3 is positive for

n G [3, 7], has a zero at n = 8, becomes negative for n G [9, 13], and becomes

positive again from n = 14 on.

P2 is negative for n G [1, 5], positive for n G [6, 188], and negative for n

greater than or equal to 189. P3 is negative at n = 1, positive for n G [2, 8],

negative for n G [9, 13], and becomes positive again beginning with n = 14.
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