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COMPACT-OPEN VERSUS /c-COMPACT-OPEN

CARLOS R. BORGES

Abstract. We obtain various examples of A:-spaces, one of which is first

countable and another is compact, such that the space of continuous

functions from a compact metric space to any of these spaces, with the

compact-open topology, is not a fc-space. We also improve some results on

products of fc-spaces.

1. Introduction. For any spaces X and Y, let Yx denote the set of

continuous functions from X to Y. Let co denote the compact-open topology

and k(co) denote the finest topology on Yx which agrees with co on every

compact subset of (Yx, co). If Y is dominated by a family f = { Ya}aeA of

subspaces (i.e., A c Y is closed if and only if, for some subfamily ty of ?F

which covers A, A n Xß is closed in Xß, for each Xß E ty; without loss of

generality, we assume that ty is closed with respect to finite unions) then let

w(co) denote the weak topology on Yx with respect to the family

{(Yx, co)}aeA. For convenience, let (Yx, co) = Yx, (Yx, k(co)) = k(Yx)

and(T*, w(co)) = w(Yx).

It is well known that if Y is metrizable and X is compact Hausdorff then

Yx is metrizable and therefore Yx = k(Yx). In §2 we show that, even for

spaces with very strong separation properties, short of metrizability, the

preceding equality fails.

We conclude this section with three useful results which appear to be

folklore, but none seems to be recorded elsewhere. Throughout, all spaces are

assumed to be Hausdorff.

Lemma 1.1. Let X be dominated by a family ty = [Xa}afEA of subspaces.

Pick sequence [Xx, X2, ... } C 9 and sequence [wx, w2, . . . } such that wn E

Xn — Xn_x. Then the set A = {wn\n = 1,2, ... } is a closed and discrete

subspace of X.

Proof. Observe that each A n Xn is a finite, and thus closed, subset of Xn

and A c \J™=xXn. Therefore A is closed, since ty dominates X. Similarly one

can prove that each A¡ = A - {w¡} is a closed subset of X, and thus of A.

Therefore A is discrete, which completes the proof.

Lemma 1.2. Let C be a compact space and let X be domainted by a family
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l3r= {Xa)aeA of subspaces. If K is a compact subset of Xe then K c K^,for

some a E F.

Proof. Suppose not (note that ®i is assumed to be closed with respect to

finite unions). Then there exists a countable subfamily {A^la,, E A, « =

1, 2, ... } such that

(a)Xa<cXa2C ...,

(b) there exists/, E (X£ - X£ ) n K.

Therefore, for each «, there exists xn £ C such that

fn(xn) E X^ - X^.

Since Tí X C is compact, we get that {(/„, x„)) has some cluster point (/, x).

Since the evaluation map w: Xe x C ^> X is continuous, then f(x) is a

cluster point of {/„(x„)}. Consequently f(x) is a limit point of A =

{/,(x1),/2(x2), . . . }, since the elements of A are all distinct. However, A is a

closed and discrete subset of X, by Lemma 1.1. Therefore A can have no limit

point. We have thus obtained a contradiction, which completes the proof.

Proposition 1.3. Let X be dominated by a family {Xa)a(EA of subspaces. If

C is compact, then w(co) c k(co). On the other hand, if for each a £ A, X£ is

a k-space, then k(co) c vv(co).

Proof. It is easily seen that vv(co) c k(co). For any closed subset A of

w(Xc), each A n X£ is closed in X£. Therefore, by Lemma 1.2, one

immediately gets that A n K is closed in K for each compact subset K of Xe,

which implies that A is a closed subset of k(Xc).

Finally we show that k(co) c vv(co). Let A be a closed subset of k(Xc).

Then, for each a, A n K is closed in K for each compact subset K of X£.

Therefore, since X£ is a /V-space, A n ^ac is closed in ^fac for each a, and

hence A is a closed subset of w(Xc). This completes the proof.

2. Examples. For any collection {7a}a6A of closed unit intervals

(throughout, A will be assumed to be an ordinal number) let KA denote the

quotient space of the disjoint topological union \Ja£AIa of the Ia which

results from identifying the zeros of all the Ia. (KA is the hedgehog simplicial

complex with the CW-topology.)

Example 2.1. If card A = 2"° then KA X KA = 7<:A is not a k-space.

Furthermore, assuming the continuum hypothesis, 7CA does not have the weak

topology over (7<a2}aeA.

Proof. In the Example on p. 563 of [4], it is proved that 7CA X Ku is not a

/c-space. Since KA X Ku is a closed subspace of 7CA X 7CA, it follows that

KA X KA is not a /c-space.

Assuming the continuum hypothesis, we get that card a = N0 for each

a £ A; consequently each K2 is a /V-space, by Lemma 8.1 of [5]. Since the

weak topological union of /c-spaces is a A>space, it follows that KA does not

have the weak topology over {K2}aeA.
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Example 2.2. There exists a stratifiable K0-space Y such that Y = 2„T„,

with each Yn separable metrizable, but Y2 =£ 2„ Y2 and Y2 is not a A:-space.

Proof. Let Q be the space of rational numbers, Z the set of integers, /:

(? -» Q/Z the natural quotient map and 1: Q -» (2 tne identity map. Dieu-

donné (see Example 1 on p. 130 of [3]) has shown that/ X \: Q X Q^> Q/Z

X Q is not a quotient map even though / and 1 are closed continuous

functions. Therefore Q/Z X Q is not a A:-space (it is easily seen that/ X 1 is

compact-covering; by Lemma 11.2 of [7], Q/ Z X Q cannot be a Ai-space).

Now let Y = Q/Z. Clearly Y is a stratifiable N0-space and Y = 2„ Y„ such

that Yn = /([ - n, n] n Q) (indeed Y is homeomorphic to the subspace of Ku

which consists of the rational points of each spine). However, Y2 is not a

/c-space, since Q/Z X ]\, f [ is a closed subspace of Y which is

homeomorphic to Q/Z X Q. From Proposition 1.3 we get that Y2 ^ ~2„Y2.

This completes the proof.

Example 2.3. There exists a first countable, separable, o-compact

stratifiable space X such that X1 is not a &-space.

Proof. Let X = {(x,j>)|x and y axe real numbers and y > 0} with the

well-known "butterfly" topology (see p. 1075 of [1]). Let A c X' consist of all

continuous functions /: / -> X such that each f(t) = (t, yt) for some y, > 0

and {t E I\y, = 0} is a nowhere dense subset of /.

Now let A' be a compact subset of X' and let us show that K n A is a

closed subset of K. Let {/„}„er be a net in K n A which converges to some

/ G K. Since /„ converges to / pointwise it is immediate that each /(/) =

(t,y(t)) for some y(t) > 0. (We will next show that {t E I\y(t) = 0} is a

nowhere dense subset of /.) Suppose {t E I\y(t) = 0} is not a nowhere dense

subset of /. Then there exists some [c, d] c / such that y(t) = 0 for each

c < t < d (recall that/(/) is compact). Then for each c < t < d there exists

some function /„ such that f„(t) = (t, 0) = f(t), because of the butterfly

neighborhoods of (t, 0).

For n = 1, 2, . . ., let Bn be the set of all c < t < d such that for some/,,

vET, f„(t) = (t,yv(t)) with 0 < v„(0 < 1/n. Each B„ is open in [c, d]

(because the evaluation map co: X' X /—»À- is continuous) and dense in

[c, d] (because, for each c < t < d, there exists some /„, v E T, such that

/>.(') = (t> 0)). By the Baire Category Theorem, there exists c < u < d such

that some Xn(w) = (u,y„n(u)) with 0 < v„(m) < 1/n, for n = 1, 2, . . . .

Therefore, by the continuity of the evaluation map, co(K X I) is compact but

contains the closed and noncompact subset {(u,y^(u))\n = 1,2,...}, a

contradiction. Consequently the function f E A n K and thus A n K is

closed; that is, A n C is closed for any compact subset C of X'. However, A

is not a closed subset of X', since the function n: / -+ X, such that h(t) =

(t, 0) for all / G /, is not in A but is clearly in A ~. This completes the proof.

Example 2.4. There exists a compact space Y such that Yl is not a A:-space.

Proof. Let X be the butterfly space of Example 2.3 and Y = BX be any
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Hausdorff compactification of X. Using the same argument of Example 2.3

we immediately get that Y1 is not a /c-space.

3. Positive results. The first two results are improvements of Lemma 8.1 on

p. 194 of [5]. The fourth shows that indeed there are nonmetrizable spaces Y

such that Yc is first-countable (therefore a /c-space), for any compact space

C.

Proposition 3.1. Let X = 1„X„ such that each X„ is locally compact and

Xn c Xn+X. If C is a finite discrete space then k(Xc) = Xe = H.nXf.

Proof. Clearly it suffices to prove this result for the case where C consists

of two points. In this case, the proof of the second equality is the same as the

proof of Lemma 8.1 of [5], with some obvious changes. The first equality

follows from Proposition 1.3.

Proposition 3.2. Let X be dominated by the point-countable family {Sa}a(EA

such that each Xa is locally compact. If C is a finite discrete space then
k(Xc) = Xe.

Proof. Again let C consist of two points. By the theorem in [8] we only

need show that A1 X A' is locally a /c-space (i.e., each point in X X X has a

neighborhood whose closure is a /c-space). Note that if x E X and x E only

Xa¡, Xai, ..., then x E X - IJ {Xa\a * at for i = 1, 2, . . . } c U,0!,^,

which shows that x E (U,°L,Arfll.)°. Therefore, if x £ only Xa¡, A^, . . . ,y £

only Xßi, Xßi, ..., and Z = U,0!,^ u U~ .A^ then (x,y)E Z° X Z° c

Z X Z which is closed in A" X A and a /c-space, by Proposition 3.1.

Proposition 3.3. Let C be compact and Y be covered by a closed locally

finite collection {Ya}aeA such that, for each finite subcollection F of {Ya) aSA,

(U F)c is a k-space. Then Yc is a k-space.

Proof. As indicated in the proof of Proposition 3.2, we only need show

that Yc is locally a /c-space.

For each y £ Y, let■ Fy — {Ya\y E Ya). Clearly Fy is finite and y E

(\JFy)°. Therefore, for/ E Yx, the compact set/(C) is contained in the

interior of the union of some finite subcollection 7yof{T}aeA and ( U Ff)c is

a /c-space.

Proposition 3.3 becomes false if { T„}aeA is assumed to be only hereditarily

closure-preserving-consider the collection of finite subcomplexes of KA in

Example 2.1.

For our last result we need the concept of hemicompactness of a space C,

which means that there exists a countable family of compact subsets of C

such that every compact subset of C is contained in some member of this

family.

We thank the referee for sharp improvements of our original Proposition 3.4 and for [6].
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Proposition 3.4. If C is hemicompact and Y has a point-countable base, then

Yc is first countable}

Proof. Let C = U"=iC„, where each Cn is compact and each compact

subset of C is contained in some C„. Let ty> be a point-countable base for Y.

Let / G Yc. For each n, let ty>'n = {B G %\B n f(Cn) ¥=0} and

ty„ = {(B, D) E <&„' x ®„'|Z) n f(C„)c B}. (From Prop. 2.1 of [2],

note that each %'n and, therefore, each tyn is countable.) Then the basic open

sets of the form n*=1(C„ n f~\D, n /(C„)), 5,), for all n and all finite

subsets {(Bx, £>,), . . . , (5^., Dk)} of léP„, will be a countable neighborhood

base for/. (Simply note that if/ G (K, V) then A" c some Ç; therefore, by

the regularity of/(Cy), there exists a finite subset {(/?,, /?,), . . . , (Bk, Dk)} of

^ such that f(K) c UL,A and U?=,5, C F, which implies that

/ g n*=1(ç n r'(A- n/(C,)), /?,) c<A, K>.)

Essentially, the converse of Proposition 3.4 is also true. Indeed 1.5(c) of [6]

states that // C is completely regular and Y contains a nontrivial path,

hemicompactness of C is a necessary condition for Yc to be first countable.

Example 6.6 of [2] is an example of a nonnormal space Y which satisfies

the hypothesis of Proposition 3.4.

The example in [6], which follows Corollary 1.7, shows that the condition

" Y has a point-countable base" in Proposition 3.4 cannot be weakened to " Y

is first countable".
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