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TENSOR PRODUCT OF COMMUTATIVE UNIONS

OF GROUPS

JAMES A. ANDERSON AND NAOKI KIMURA

Abstract. In this paper a description is given of the tensor product of two

arbitrary commutative unions of groups.

1. Structure theorem. The study of tensor products of commutative

semigroups was initiated independently by Grillet [5] and Head [6]. In 1967,

T. Head [8] determined the tensor product of a commutative group with a

commutative union of groups, and posed the problem of determining the

tensor product of semilattices, and more generally, the tensor product of

commutative unions of groups. Anderson [1] treated closely related questions.

J. Delaney [4] determined the tensor product of semilattices when one of

the semilattices is a chain. The solution for arbitrary semilattices (given below

as Theorem 1.2) is due to N. Kimura [9], and the solution for complete

lattices is forthcoming in N. Kimura and J. L. Williams [10].

In this paper, all groups and semigroups will be commutative, all semilat-

tices will be lower semilattices with juxtaposition as the operation. Let

<pL4, B) denote the set of finitely generated bifilters [2] of A x B. The bifilter

generated by (a, ß) E A X B will be denoted by [(a, ß)] or by a, ß when

used as a superscript or subscript. Let t [ S denote the restriction of t to S.

For general information on semigroups see [3], for bifilters see [2], and for

colimits see [11].

Definition 1.1. Let A and B be semilattices and C = A x B be their direct

product. A subset F of C is called a bifilter if the following conditions are

satisfied:

(KO) F is dual hereditary, i.e. if (a, b) E F, a < x, b < y then (x,y) G F.

(Kl) For every b G B, if (a, b), (a', b) G F then (aa', b) G F.

(K2) For every aEA,'ú(a, b), (a, b') E F then (a, bb') E F.

The following theorem is due to N. Kimura [9] and is given here without

proof:

Theorem 1.2. Let A and B be semilattices. Let p: AX B-><b(A, B) be the

mapping defined by p(a, ß) = [(a, /?)], then p is a bihomomorphism and

<b(A, B) is the tensor product of A and B.
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In the remainder of this paper <$>IA, B) will be identified with A ® B.

Every union of groups can be completely characterized by its greatest

semilattice quotient A, the maximal subgroup Ga for each a E A, and the

system of homomorphisms <f>£: Ga^>Ga, for a > a'. Call (Ga, <b£, A) the

corresponding triple of G, and {<b£} the set of defining homomorphisms of G.

Let Ga be the group associated with a. Let la be the identity of Ga, then

</>£?(&») = !«-&,• The semilattice of identities of the groups in G will be

identified with the greatest semilattice image of G.

In the remainder of this paper, G and H will be unions of groups with

corresponding triples (Ga, <b£, A) and (Hß, 9j¡,, B) resp.

Lemmas 1.3, 1.4, and 1.5 are due to Head [6], [7].

Lemma 1.3. For semigroups S and T, with greatest idempotent images A and

B resp., A ® B is the greatest idempotent image of S ® T.

Lemma 1.4. If Sa and Tß are maximal subgroups of semigroups S and T, then

Sa ® Tß is imbedded in S ® T and is a maximal subgroup of S ® T.

Lemma 1.5. The tensor product G ® H is a union of groups.

Lemma 1.6. Ga ® Hß is the group associated with [(a, /?)] in G ® H.

Proof. From Lemma 1.4, Ga ® Hß C G ® H. Hence by Lemma 1.5,

Ga ® Hß is a maximal group in the union of groups G ® H.

From the commutivity of the diagram

A x B->G x H

I I
A ®B->G ®H

we have Ga ® Hß associated with [(a, ß)] in G ® H.

Let G and H be unions of groups with corresponding triples (Ga, <b£, A)

and (Hß, 91,, B) resp. For AG^/f, B) let @A = {Ga ® Hß, *¿ ® 9$.\(a, ß),

(a', ß') E A}. Let TA be the colimit of @A with colimiting cone {yAa'ß):

Ga® Hß^> TA\(a, ß) E A}. Choose Taß = Ga® Hß with colimiting cone

{C S Bf: Ga, ® Hß, -* Ga ® Hß\(a', ß') E [(a, ß)]). For I\ A E Q(A, B),
T C A => @r C @A. For each (a, ß) E T, y(A'ß) is a homomorphism from

Ga ® Hß to rA. Also by definition of colimiting cone, •y4a',/n(«r»a" ® f?/) =

y^^) for all (a, ß), (a', ß') E A and hence for all (a, ß), (a', ß') E T.

Therefore by definition of colimit there exists a£: TT -> TA such that

Ga®H0->TT
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commutes for all (a, ß) E T. Trivially o-£aF = o£ hence we have the charac-

terization of a union of groups.

Lemma 1.7. (TA, a£, <b(A, B)) is the corresponding triple for a union of groups,

where A<TifTcA.

Notice that a%. = d»0a- ® Og..

Theorem 1.8. T is the tensor product of G and H.

2. Proofs. The proof of Theorem 1.8 is given through a series of lemmas.

Lemma 2.1. Define t: G x H -» T by r(ga ® hß) = ga Í

ga E Ga, hß E Hß. The map r is a bihomomorphism.

Proof. Let r(ga, hß) = ga ® hß G TaS and r(ga, hß) = ga

Then

hß e Ta,ß f°r

V e T°,ß-

t(&, hß)r(ga, hß.) = <&, (ga ® hß)o:fß, (ga ® hß.)

= {ga®9$p,(hp))(ga®9$p,(hp,))

= & ® C (*„)*& (V) = & ® hßhß' - TU<- *A)-

Similarly T(g„, hß)T(ga., hß) = r(gaga., hß).

Lemma 2.2. Let G be a union of groups with corresponding triple (Ga, <}>£, A)

and f: G -> S be a homomorphism, then f(G) is a union of groups. If (f(Ga),

4>£,f(A)) is the corresponding triple off(G) then

f

AC«)

<ba,

K

* G

f

M«')
commutes.

Proof./«(&) = f(hga) = /(U/(&) = «/(&).

Lemma 2.3. Given a bihomomorphism k: G X H -* K, there exists a unique

homomorphism f: T-> K such that k = Jr.

Proof. Let K be a semigroup and k: G X //-> Kbe a bihomomorphism.

Let/a/9 be defined on Ga ® //ß (= Tai8) so that

cax#a-►£.»#*

T\Ga®H,

commutes. For A = [(a,, ßx).. . (an, ß)], let A¿ be the maximal subgroup
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containing

/o(l)jS(I)(Ga(l) ® Hß(\))fa(2)ß(2)(GaO.) ® Hß(2)) '   '   " fa(,m) ß(m)(G„(m) ® Hß(m)).

Let AT = U KA and (A"A, ̂ <b(A, B)) be the corresponding triple for K. For

(a, ß) E A, let wa/8: Ga®Hß^ KA be defined by m^ = *f/a/3. Using

Lemmas 1.5, 1.6 and 2.2 one shows ^"',ßß,faß = /a7,(<f>a" ® 9$,). Hence

"V  = ^A faß  ~ *Â'    "^a'.ß'faß

= *í*W (<*>; ® # ) = ««•/,<(« ® # )•
Therefore by definition of colimit, there exists fA: TA -» KA such that

commutes for all (a, ß) E A. Define /: T—> A" such that / agrees with fA on

n-
By definition of maß we have for all (a, ß) E T C A

G„®H0

[faß

7A

a:.
\T,û:,(3*A

*7\

a ,(3
+ A,

commutes. Hence in the diagram

Ga®H0
ir

faß fv

fAy?'ß = n% = *m% = *S/rYfa,/,) for all (a, ß) E T. Hence by
definition of colimit/¿o^ = ^£/r. Hence

commutes.
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The function/is a homomorphism, for let u G TT, v G TA, uv G TA then

/(«)/(„) = *I(/(«)*A/(t>)) -/(«£(«))/(**(»))

= /K("K(»))=/M-
Trivially Jr = ß. Also / is the unique homomorphism such that fr = ß since

the image of t generates T.

3. Remarks. This work also solves the structure of the tensor product of an

arbitrary commutative semigroup with a union of groups. This follows since

Head [7] has shown that if S is an arbitrary commutative semigroup and G a

union of groups then

(S ® G) a 5 ® (G ® Z) « (S ® Z) ® G

and 5 ® Z is a union of groups.

Since the tensor product of unions of groups in the category of commuta-

tive semigroups is a union of groups, it is the same in the category of unions

of groups, hence this work also solves the structure of the tensor product of

unions of groups in the category of commutative unions of groups.
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