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ON WEYL FRACTIONAL CALCULUS

R. K. RAINA AND C. L. KOUL

Abstract. The Weyl fractional calculus is applied in developing the

Laplace transform of ff(t), for all values of q. Also, a generalized Taylor's

formula in Weyl fractional calculus is established. The results are then used

in deriving a certain generating function for the //-function of Fox.

1. Introduction. Let A denote a class of good functions. By a good function

/, we mean (Miller [6, p. 82]) a function which is everywhere differentiable

any number of times and if it and all of its derivatives are 0(x~v), for all v as

x increases without limit.

We define the Weyl fractional derivatives of a function g(z) as follows: Let

g E A, then

(-09
DUU) = f7Z^ /°°(" - zYq~'s(u)du,   for? < 0.

For q > 0,

dr

dzrK >'

(1)

(2)

r being a positive integer such that r > q.

We recall the definition of //-function of Fox [3, p. 408] in the form:

M,N
H(z) = H?¿

(ai> adi,P

(*,.A),,Ô

<o=V^T,

where, for convenience,

nf_,r(è,. -/?,.*)n?=1 r(i - û(. + <v)
9(s) =

n?_w+, m - ¿,. + ßiS) nf=JV+1 T(a¡ - «,*) '

(3)

(4)

z i= 0, and an empty product is interpreted as unity. The integers M, N, P, Q,

are such that 0 < M < Q, 0 < N < P; the coefficients a, (/'=!,..., P), /?,
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(i = 1, . . ., Q), are all assumed to be positive. L is a suitably chosen contour

such that all the poles of 9 (s) are simple.

The //-function H(z) is a very general function and has for its particular

cases a number of important special functions. For the conditions of exis-

tence of the function (3) and its various special cases, the paper of Gupta and

Jain [4, pp. 596-600] may be referred to.

2. The Laplace transform of ff(t), for arbitrary q.

Theorem 1. Letf(t) be such that

g(p) = L[f(t);p]    exists and belongs to A, (5)

where L[f(t);p] denotes the Laplace transform of /(/). Then, for all q,

(-\)qpD'-M = L[t«f(t)\p]. (6)

Proof. For q < 0, we have in view of (1)

<_l|''°1,w"r¿)  r^-p)-'-'s(u)du

- rR> />-»"'"'{VW.*)*

Using Erdélyi [2, p. 202, (11)] to evaluate the inner integral on the R.H.S, we

get

(-l)qpD'-*W = L[t*f(t);p],   for(?<0. (7)

For q > 0, invoking the definition (2), we can write:

(_ YfpDiM = _^_ | jf00 e-"'t"-J(t) dt}. (8)

Differentiating under the sign of integral, we again find that

(-\)"p^W=L[t"f(t);p],    forq>0. (9)

This completes the proof of the theorem.

3. The generalized Taylor's formula. We prove the following theorem which

may be regarded as a generalization of the familiar Taylor's formula.

Theorem 2. Let

(i) abe a real number such that 0 < a < 1,

(ii) t/ be an arbitrary complex number and

(\u)g(p)EA.

Then

siP + t)=   2     TV  atT\ n pD^S(p) (10)
„=-«,   T(an + Tj + 1)

is valid for all t on the circle \t/p\ = 1.
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Proof. Since g E A, we may suppose g(z) = z *f(z). Assume f(z) =

The L.H.S. of (10) then gives (p + í)~ A2?-o CAP + 0'- Now the R.H.S.
of (10) is

■"  +  T»  +   1) \ ,_0 /T(a/i

Since

=    2

,DU-X _

a/
Û/I + T)

r(«i + n + i) rf0
Cr-pD» p

DZ + *n-<X-r)

(-l)qT(X + q)

T(X)
-\-q

(11)

valid for all q, the R.H.S. of (10) after a little simplification reduces to

*.(-!/(■)-iza
The inner sum can be simplified by making use of the known formula of

Osier [7, p. 46, (5.1)], viz.

2     a(anP+ r))'0"^ = 0 + ')'.   for |/| - 1,
n« —oo      x ' '

to get 2f_0 Cr(p + 0_X+r- This completes the proof of Theorem 2.

4. Generating functions. Suppose

(12)

atf(t) = t°-xH»$

Then from (5) and Gupta [5, p. 83],

g(p)=p-°nw:Qi i

(a-> «,)i,/>

(bi.ßi\Q
h>0.

(1 - a, h), (a,, a,), f

iP„ß,\Q

(13)

(14)

provided that

Re[o + A(VA)]>0   (/= 1,...,M),   |aigfl|<jJñr,

where

*-2(A)- 2 (A) + 2(°,)- 2 («,)>o-
1 A/+1 1 N+\
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Also, we have for arbitrary q,

191

zD~zxH£g az
(a¡> a¡)i,p

ihßi\Q

-(-l)z    HHP_ihQ+0+1 az
(l+\-q, h), (a,., «,),,

to.A)..e>(l+A,A)
(14a)

provided that

Re[ -A + h$\ > 0   (i = 1,. .., M), h > 0, |arg a\ <x2Ktr,

M Q N P

where * = £(/?,.)-  2 (A) + 2(<*,)- 2 («,) > 0.
1 A/+1 1 Af+l

(14a) can be established easily by using the contour integral representation (3)

and (11).

Substituting/(/) and g(p) from (13) and (14) respectively in the generalized

Taylor's formula (10) and using (14a) appropriately, we get

M.N+l(p + /)  'H&Ú a'(p + ty
(1 - o, h), (a¡, a¡)xp

{bi,ßi\Q

= P~°
S      a(-t/P)

Öfl + TJ

T(an + n + 1)

ffM,S+inP+l,Q a'p-h
(I - a - an - f\,h),(a¡,a¡)xp

(15)

Puttingp = 1, o = 1 — ax, h = ax and adjusting the other parameters, we get

the generating function

(1 + t)a'~xH^N

OO

=   2

z(\ + ty
(a¡, a¡)xp

(6/.A),.e
v an + ij

a(-t)

T(an + t, + 1)     PQ

(ax -an- n, ax), (a¡, a¡)2p

(b.ßiho
(16)

Obviously for r¡ = 0 and a = 1, (16) corresponds to a known result of

Anandani [1, p. 6, (2.1)].
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