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ON THE EXISTENCE OF
MAXIMAL AND MINIMAL SOLUTIONS FOR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

J. W. BEBERNES AND K. SCHMITT

Abstract. The existence of maximal and minimal solutions for initial-

boundary value problems and the Cauchy initial value problem associated

with Lu — f(x, t, u, Vu) where L is a second order uniformly parabolic

differential operator is obtained by constructing maximal and minimal

solutions from all possible lower and all possible upper solutions, respec-

tively. This approach allows / to be highly nonlinear, i.e., / locally Holder

continuous with almost quadratic growth in |V«|.

1. Introduction. In this paper we study the existence of maximal and

minimal solutions for initial boundary value problems and the Cauchy initial

value problem associated with

Lu=f(x,t,u,Vu), (P)

where L is a second order uniformly parabolic differential operator.

In recent years a considerable amount of study has been devoted to

establish the existence of solutions for elliptic and parabolic problems pro-

vided upper and lower solutions of such problems exist. Much of this work

has its basis in the fundamental paper of Nagumo [9] as carried further by

Akö [1] and Tomi [17]. Keller [5] and Amann [2] constructed solutions

between upper and lower solutions of elliptic problems using a monotone

iteration scheme which was possible because of certain one sided Lipschitz

continuity assumptions upon the nonlinear terms and because the

nonlinearities were assumed gradient independent. (For a recent survey of

such results see the paper by Schmitt [16].) Sattinger [15] extended Amann's

results (assuming that f(x, t, u) is C ' with respect to u) to parabolic initial

boundary value problems using a similar monotone iteration scheme. This

work was subsequently extended to various kinds of problems for both

elliptic and parabolic equations by Pao [10], [11] and Puel [13] using either

monotone iteration techniques or the theory of monotone operators.

In these papers a minimal solution is produced by starting the iteration

scheme with the given lower solution and the maximal solution by commenc-

ing the scheme with the upper solution. While this procedure has certain
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computational advantages the permissible class of nonlinearities is restricted

to those/described above.

Using a different approach (an approach patterned after methods

employed by Akö [1] in the study of Dirichlet boundary value problems for

elliptic equations) we demonstrate the existence of maximal and minimal

solutions for both initial boundary value and Cauchy initial value problems

associated with (P) where a much larger class of nonlinearities / is permis-

sible, e.g.,/may depend upon V« (though it is necessary to require a Nagumo

type growth condition with respect to this variable) and / need not be

Lipschitz continuous with respect to u. The maximal and minimal solutions

will, respectively, be obtained as the supremum of all possible lower solutions

and the infinimum of all possible upper solutions where the concept of upper

and lower solutions as used here is somewhat more general than that used in

the papers quoted above (see definitions below).

In the next section we make precise our assumptions and formulate the

problems to be considered. In §3 we state an invariance result from which we

deduce the existence of solutions lying between upper and lower solutions

while in §4 we state and prove our main result.

2. Definitions and notation. Let R" denote «-dimensional real Euclidean

space with norm denoted by | • |, let ñ be a bounded domain in R" whose

boundary 9 ß is an n — 1 dimensional manifold of class C2+a, 0 < a < 1.

Let BN = {xE R": |x| < N), mT « Q X (0, T), ■*$_= BN X (0, T), TT =

(9ß X [0, T]) u(ÛX {0}), r£ = (dB* X [0, T]) X (BN X {0}).

For u: D X [0, T] -> R (D will equal either ti or R", depending on which

problem is being considered), define Lu by

(Lu)(x, 0-2   a0(x, t) ¿|- + ± bt(x, t) -g- +c(x, t)u - -| ,

where aip b„ c E Caa/2(D X [0, T]), 0 < a < 1, (Ca'a/2() shall denote the

usual Holder space of functions u(x, t) which are Holder continuous with

respect to x with exponent a and with respect to t with exponent a/2 and

which is endowed with the standard Holder norm, see [6]), 1 < i, j < n, and

c < 0. We assume that L is uniformly parabolic, i.e., there exist constants p,

X, 0 < X < p, such that for all £ E W and all (x, t) E D X [0, T]

xiii2 < ¿ au(x,t)uJ< p\e.

Let/: flX[0J|xRxR"^R, defined by (x, /, u,p)r^f(x, t, u,p)hea

Holder continuous function with Holder exponents a, a/2, a, a in the

respective variables x, t, u,p.

Given \p: TT -» R, we consider the initial boundary value problem (IBVP)

Lu = f(x, t, u, Vu),       (x, t) G Q X(0, T], (1)

u - *,       (x, t) E TT, (2)
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where ^ is continuous and may be extended to mT so as to belong to

C2+a,x+a/2(mT), and satisfies compatibility conditions appropriate to (1), (2).

Given <p; R" -> R, we consider the Cauchy initial value problem (CIVP)

Lu = f(x, t, u, Vu),       (x, t) E R" X(0, r], (3)

u(x, 0) = <p(x), (4)

where again <p satisfies appropriate compatibility conditions.

It will be clear from the development to follow that the results will also

hold for IBVP's of the second kind.

A continuous function v; mT —> R is called a lower solution of (1), (2) in case

v(x, t) < +(x, t),       (x, t) E TT, (5)

and if for every (x0, t0) E mT there exists an open neighborhood U of (xq, t0)

and a finite set of functions {u,}I<r<i C C2,X(U n irT) such that

Lvr > f(x, t, v„ Vu,),       (x, t) E Ü n Tiy, 1 < v < s, (6)

and

v(x, t) =  max   vr(x, t),       (x, t) E U r\irT- (7)
1 < r<s

If in the above definition the inequality signs in (5) and (6) are reversed and

in (7) max is replaced by min then v is called an upper solution of (1), (2).

One defines lower solutions for (3), (4) similarly, by replacing mT

everywhere by R" X (0, T) and (5) by

v(x, 0) < <p(x),       x E R". (8)

In analogous manner the concept of an upper solution for (3), (4) is defined.

If in any of the above definitions the inequalities occurring are replaced by

strict inequalities the lower (resp. upper) solution will be called a strict lower

(resp. strict upper) solution.

3. Invariance and existence. The first result needed in the development to

follow is a known invariance result, a more general version of which appears

in [3]. In the form given it is a Nagumo-Westphal type lemma.

Lemma 1. Let a, ß be strict lower and upper solutions of (1), (2) with

a(x, t) < ß(x, t), (x, t) EmT. If u is a solution of (1), (2), then a(x, t) <

u(x, t) < ß(x, t),(x, t) E mT.

Proof. Let u E C2'x(mT) be a solution of (1), (2) and assume

def
u(mT) ZL {v; a(x, t) < v < ß(x, t), (x, t) E mT)  = (a, ß).

We then may assume (other cases may be argued analagously) that tneic

exists (x0, t0) E mT such that «(xq, t¿) = a(x0, t0) and a(x, t) < u(x, t), (x, t)

6 8 X [0, in). There exists a neighborhood U of (*0, t0) and functions

{ar)x<r<s satisfying (6) and (7) with strict inequalities holding in (6). Let

ak(x0, t0) = a(*0, /„), and put v(x, t) = u(x, t) - ak(x, t), then v(x, t) > 0,
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(x, 0 e (Q X [0, t0)) n U, ü,(x0, g < 0, Vo(x0, t0) = O and

- 3o(x0, tp)
Z   *//(*<» /0) > 0

iV-l oXjOXj

and thus (Lo)(x0, f0) > 0. But

(Lu)(x0, i0) = (L«)(x0, /0) - (LaJ(x0, tQ)

= f(x0, t0, u, Vu) - (Lak)(xQ, t0)

= f(x0, t0, ak(x0, t0), Vak(xo, t0)) - (La^x^ t0)

< 0,   by hypothesis.

We have thus arrived at a contradiction.

Using this invariance result we derive via an existence result from [3] the

following existence theorem. A similar result is contained in Puel [13,

Theorem 3.1, p. 97], though with a more complicated proof.

Theorem 2. Let a, ß be lower and upper solutions of (1), (2) respectively with

a(x, t) < ß(x, t), (x, t) G ttj.. Let there exist a positive continuous nondecreas-

ing function O: [0, oo) -» (0, oo) such that s2/$(s) -» oo as s -» oo and

\f(x,t,u,p)\ <$(\p\),

a(x,t)<u< ß(x, t), (x, t) E ifT.

Then the IBVP (1), (2) has a solution u E C21(ñy) with a(x, t) < u(x, t) <

ß(x, t), (x, t) G mT.

Proof. Define/in the following way

/ (x, r, u,p) =

f(x, t, ß (x, t), p) + (u- ß (x, t)),    if u > ß (x, t),

f(x, t, u,p),    ifa(x, t) < u < ß(x, t),

f(x, t, a(x, t),p) + (u - a(x, /)),      if u < a(x, t).

Choose constants a and b, a < 0 < b, such that a < a(x, t) < ß(x, t) < b,

(x, t) G ñT and

/ (x, t, a, 0) < 0 < / (x, t, b, 0). (9)

Using Theorem 2 of [3] we may conclude that the equation

Lu = / (x, t, u, Vu),       (x, /) G 5 X(0, T], (10)

has a solution u satisfying (2) and a < u(x, t) < b. Let e > 0 be given. It

follows from the definition of / that a(x, t) — e and ß(x, t) + e are strict

lower and upper solutions of (1), (2), respectively. Thus by Lemma 1 we have

that a(x, t) — e < u(x, t) < ß(x, t) + e, (x, t) G ñT. Since e > 0 was

arbitrary, we conclude that in fact a(x, t) < u(x, t) < ß(x, t), (x, t) G "nT,

and thus u is a solution of (1), (2).

From the above existence theorem for IBVP's for (1), (2) we can easily

derive the following existence theorem for the CIVP (3), (4).
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Theorem 3. Let a and ß be lower and upper solutions, respectively, of (3), (4).

For each N > 0 let there exist a function 4\ having the properties of <E> in

Theorem 2 on the set m£'. Then the CIVP (3), (4) has a solution u E C2'X(R" X

[0, T]) such that a(x, t) < u(x, t) < ß(x, t), (x, i)6R"X [0, T].

Proof. For each positive integer TV, there exists a solution uN of the IBVP

Lu = f(x, t, u, Vu),       (x, t) E BN X(0, T],

uN(x, 0) = <p(x),       x E BN,

uN(x,t) = 9N(x,t),       (x,t)EdB»x[0,T], (11)

where 9N is a sufficiently smooth function which satisfies

9N (x, 0) = <p(x),       a(x, t) < 9N (x, t) < ß(x, t),

(x, t) E Vj, as follows easily by an application of Theorem 2. Using standard

estimates and a diagonalization process one obtains a subsequence of

{"aí}5v_i which converges uniformly on compact subsets of R* X [0, T] to a

solution of the CIVP (3), (4).

4. Maximal and minimal solutions. In this section we establish the existence

of maximal and minimal solutions of the IBVP (1), (2) and the CIVP (3), (4).

Mlak [7] has obtained such results for special classes of nonlinearities for

IBVP (1), (2).
A solution U of the IBVP (1), (2) [CIVP (3), (4)] is a maximal solution

relative to a given pair of lower and upper solutions a and ß with a(x, t) <

ß(x, t), (x, t) E mT[(x, t) E R" X [0, T]], if a(x, t) < ü~(x, t) < ß(x, t), and

if u is any other such solution then u(x, t) < u~(x, t) for (x, t) E mT[(x, t) E

R" X [0, T]]. Minimal solutions are defined analagously.

Theorem 4. Let the hypotheses of Theorem 2 hold. Then the IBVP (I), (2)

has a maximal solution wmax and a minimal solution umili relative to the pair a,

ß-

Proof. Let £ = {v: mT ->• R, a(x, t) < v(x, t) < ß(x, t), (x, t) E mT, v is

a lower solution of (1), (2)}, and let % = {w; Tiy-^R, a(x, t) < w(x, t) <

ß(x, t), (x, t) E mT, w is an upper solution of (1), (2)}. Define «„^ and «„„„

by

"max(*> t) = sup{u(jc, t): v E £),   u^x, t) = inf{n>(.x, t); w E sli).

We shall establish that umax, thus defined, is a maximal solution, that u^ is a

minimum solution will follow in much the same way.

Let {(xN, tN)}™=x be a countable dense subset of mT and for N = I,

2,. .., let {%m}"_ ! be a sequence of lower solutions such that

Jim  vNm(xN, tN) = u^Xh, tN).
m—»oo

Let ax(x, t) = vxx(x, t); it follows from Theorem 2 that there exists a solution
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w, of (1), (2) such that ax(x, t) < w,(x, r) < ß(x, t), (x, t) E trT. Let a2 he

defined by

a2(x, t) = max{w,(x, t), vh2(x, t), v22(x, t)},

then a2 is a lower solution of (1), (2) and by a further application of Theorem

2 there exists a solution u2 of (1), (2) such that a2(x, t) < u2(x, t) < ß(x, t),

(x, t) E mT. Inductively let ai+x be the lower solution of (1), (2) defined by

°k+i(x> 0 = max{M,(x, t), vXi(x, t),. . ., u,,(x, t)},

where u¡ is a solution of (1), (2) such that a¡(x, t) < w,(x, t) < ß(x, t),

(x, t) E mT. We thus have, inductively, obtained a sequence of solutions

{m,}°°=1 of (1), (2) such that a(x, t) < ux(x, t) < ■ ■ ■ < u,(x, t) < • • • <

ß (x, t), (x, t) E ttt. Arguments similar to those used in the proof of Theorem

2 of [3] show that the sequence {u,}°t, will converge to a solution m of (1),

(2). Furthermore it is clear that

lim u,(xN, tN) = umax(xN, tN)
I—»00

for N — 1, 2,.... Hence u(xN, tN) > v(xN, tN), for all v G £ and N — 1,

2,. ..  and thus since {(x*,, tN)}x=x is dense in «FT it follows that u(x, t) >

v(x, t) for all (x, t) E ttt, v E £. Thus u(x, t) = «„^(x, /), (x, f) G mT and

consequently u,,,^ is a maximal solution of (1), (2).

Using a similar argument and Theorem 3 one obtains the following result.

Theorem 5. Let the hypotheses of Theorem 3 hold. Then the CIVP (3), (4)

has a maximal solution t/max and a minimal solution unún relative to the pair a,

ß-

Remark. It follows from Theorem 7 of [3] that the set of solutions u of (1),

(2) with wmin(x, t) < u(x, t) < umsa(x, t), (x, t) G 77r, is a continuum in

C"(«T).

Remark. The proof of Theorem 4 is based on a method due to Akö [1].

Examples. 1. The following example is similar to one given by Prodi [12]

and Redheffer and Walter [14] to illustrate nonuniqueness for IBVP (1), (2).

Consider

uxx -«,--(« + (cos x • u)x/T),       (x, t) G (-it/2, it/2) X (0, 1),

u(x, 0) = 0,       xE(-tt/2,tt/2),

u(-tr/2,t) = 0=u(n/2,t),       t G (0, 1).

Then a(x, t) = 0 and ß(x, t) = t2 are lower and upper solutions, respec-

tively, on [-7t/2, 7t/2] X [0, 1]. The family {u(x, t; t0)} given by

u(x, t; t0) =

0,       0 < t < t0,

t0 < t < 1,
(t - t0)2 cos X
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are solutions. By Theorem 4, Hmax and uIDin exist between a and ß on

[-VW2]X[0, 1].
2. For the CIVP: Au - u, - - «1-Y, y E (0, 1) with u(x, 0) = 0, ß(x, t)

= (y/)1/y and a(x, t) = 0 are upper and lower solutions on R" X [0, T]. By

Theorem 5, t^ and t/^ exist.

3. The next example is similar to one given by Mlak [8] for the IBVP.

Consider uxx - u, = f(x, u), (x, t) E R X (0, tt/2), u(x, 0) = cos x, x E R,

where

fix mi = I — " + sSn(cos *)Vcos2.x - u2 ,       \u\ < cos x,

[ — u,        \u\ > COS X.

Then  ß(x, t) = 3e' — 1   and  a(x, t) = —3e' + 1   are  upper  and  lower

solutions, respectively. The family {u(x, t; t0)) given by

cos x,       0 < t < t0,
u(x, t; rn) = .

1 cos(f - i0) cos x,        t0< t < 7T/2,

are solutions of the given CIVP. By Theorem 5, «„^ and umin exist.

Remark. Prodi [12, p. 37] has noted that if / satisfies a Holder condition

and a Nagumo growth condition with respect to p, then locally upper and

lower solutions can be constructed. With this observation any problem (IBVP

or CIVP) which has nonuniqueness locally has distinct maximal and minimal

solutions respectively by our Theorems 4 and 5.
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