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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

A SHORT PROOF OF A VERSION OF ASPLUND'S NORM
AVERAGING THEOREM

K. JOHN AND V. ZIZLER

Abstract. A short proof is given of a somewhat weaker version of

Asplund's result on averaging smooth and rotund norms in Banach spaces.

In 1967 E. Asplund [1] found a general construction, which, in the case of

locally uniformly rotund (LUR) norms, gives

Theorem 1 (Asplund). // a Banach space X admits an equivalent LUR

norm || • ||, and an equivalent norm \\ • \\2 whose dual norm is LUR, then X

admits an equivalent LUR norm ||| • ||| whose dual norm is also LUR.

Recall that an LUR norm is one which satisfies limjx, — x|| = 0 whenever

Xj, x E X and lim, 2(||x,-||2 + ||x||2) - ||x + Xj\\2 = 0.

We give here a short proof of the following weaker version of Theorem 1 :

Theorem 1' (Asplund). Under the same assumptions as in Theorem 1, X

admits an equivalent norm \\\ ■ \\\ which is LUR and Frèchet differentiable (on

X \ {0}).

Proof of Theorem 1'. For n > 3 let ||/||* = (||/||f2 + w_1||/||*2)1/2. Each

|| • ||* is clearly an LUR equivalent norm on X*, dual to some norm || • ||„ on

X. Furthermore, lim„ ||x||„ = ||x||, uniformly on bounded sets of X. Since

each || • ||* is LUR, the norm || • ||„ is Fréchet differentiable (cf. e.g. [2]).

Consider the norm |||x||| = (2"_32_"||x||2)1/2; this is an equivalent norm on

X. Since the differentials (|| • ||2)' of || • ||2 are uniformly bounded on

bounded sets of X, the norm ||| • ||| is Gâteaux differentiable and the differen-

tial (HI • |||2)' is norm-norm continuous (as all (|| • ||2)' are such-see e.g. [2]).

Thus HI • m is Fréchet differentiable. To see that ||| • ||| is LUR, suppose x,,

x E X, and lim, 2(|||xJ|2 + |||x|||2) - |||x,. + x|||2 = 0. Then the same is true

for any || • ||„ and since {xy} is then necessarily bounded and limn ||x||„ =
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||jc||, uniformly on bounded sets, we have lim, 2(||jt,-|fi + \\x\\2) — \\Xj + x\\2

= 0. So, by LUR of the norm || • ||,, we have lim- \\xj — x\\x = 0.

Remark. The above argument also works for other properties (like

rotundity, uniform rotundity, etc.). In the case where there is exact duality

between a differentiability and a rotundity notion (e.g. uniform rotundity and

uniform Fréchet differentiability, or rotundity and Gâteaux differentiability

in reflexive spaces), our proof gives the original Theorem 1.
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