SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF A VERSION OF ASPLUND'S NORM AVERAGING THEOREM

K. JOHN AND V. ZIZLER

ABSTRACT. A short proof is given of a somewhat weaker version of Asplund's result on averaging smooth and rotund norms in Banach spaces.

In 1967 E. Asplund [1] found a general construction, which, in the case of locally uniformly rotund (LUR) norms, gives

THEOREM 1 (ASPLUND). If a Banach space X admits an equivalent LUR norm $\|\cdot\|_1$ and an equivalent norm $\|\cdot\|_2$ whose dual norm is LUR, then X admits an equivalent LUR norm $\|\|\cdot\|\|$ whose dual norm is also LUR.

Recall that an LUR norm is one which satisfies $\lim_j ||x_j - x|| = 0$ whenever $x_i, x \in X$ and $\lim_j 2(||x_j||^2 + ||x||^2) - ||x + x_j||^2 = 0$.

We give here a short proof of the following weaker version of Theorem 1:

THEOREM 1' (ASPLUND). Under the same assumptions as in Theorem 1, X admits an equivalent norm $\| \| \cdot \| \|$ which is LUR and Fréchet differentiable (on $X \setminus \{0\}$).

PROOF OF THEOREM 1'. For $n \ge 3$ let $||f||_n^* = (||f||_1^{*2} + n^{-1}||f||_2^{*2})^{1/2}$. Each $||\cdot||_n^*$ is clearly an LUR equivalent norm on X^* , dual to some norm $||\cdot||_n$ on X. Furthermore, $\lim_n ||x||_n = ||x||_1$ uniformly on bounded sets of X. Since each $||\cdot||_n^*$ is LUR, the norm $||\cdot||_n$ is Fréchet differentiable (cf. e.g. [2]). Consider the norm $|||x||| = (\sum_{n=3}^{\infty} 2^{-n} ||x||_n^2)^{1/2}$; this is an equivalent norm on X. Since the differentials $(||\cdot||_n^2)'$ of $||\cdot||_n^2$ are uniformly bounded on bounded sets of X, the norm $|||\cdot||$ is Gâteaux differentiable and the differential $(||\cdot||_n^2)'$ is norm-norm continuous (as all $(||\cdot||_n^2)'$ are such-see e.g. [2]). Thus $|||\cdot||$ is Fréchet differentiable. To see that $|||\cdot||$ is LUR, suppose x_j , $x \in X$, and $\lim_j 2(|||x_j||^2 + |||x||^2) - |||x_j + x|||^2 = 0$. Then the same is true for any $||\cdot||_n$ and since $\{x_j\}$ is then necessarily bounded and $\lim_n ||x||_n =$

 $||x||_1$ uniformly on bounded sets, we have $\lim_j 2(||x_j||_1^2 + ||x||_1^2) - ||x_j + x||_1^2 = 0$. So, by LUR of the norm $||\cdot||_1$, we have $\lim_j ||x_j - x||_1 = 0$.

REMARK. The above argument also works for other properties (like rotundity, uniform rotundity, etc.). In the case where there is exact duality between a differentiability and a rotundity notion (e.g. uniform rotundity and uniform Fréchet differentiability, or rotundity and Gâteaux differentiability in reflexive spaces), our proof gives the original Theorem 1.

REFERENCES

- 1. E. Asplund, Averaged norms, Israel J. Math. 5 (1967), 227-233.
- 2. J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin, 1975.

MATHEMATICAL INSTITUTE, CZECHOSLOVAK ACADEMY OF SCIENCES, ŽITNÁ 25, PRAHA, CZECHOSLOVAKIA

DEPARTMENT OF MATHEMATICS, CHARLES UNIVERSITY, SOKOLOVSKÁ 83, 18600, PRAHA, CZECHOSLOVAKIA