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EVALUATION OF CHARACTER SUMS

CONNECTED WITH ELLIPTIC CURVES

KENNETH S. WILLIAMS1

Abstract. Let p be an odd prime and let ( - ) be the Legendre symbol. It is

shown how to evaluate the character sum S^ii^), for certain quartic

polynomials/(x). For example, it is shown that

Py I x4 - »x3 + 12s2 - 16* + 4 \

I 2Í - \x¡ - 1,    if/i = 1 (mod 4),

[ -1, if p = 3 (mod 4),

where x, is defined for primes/» = 1 (mod 4) by

p = x\ + y],   xx = — 1    (mod 4).

Let p be an odd prime and let ( -') be the Legendre symbol. It was shown in

[28] (by completely elementary means) that, if F is a complex-valued function

defined on the integers, which is periodic with period p, then

2l W  **2 + ** + c  ) = '±lF(x) + '¿' ( ¿>*2 + A* + * )f(x)
x=o     \Ax2 + Bx+C I     ¿Zo   W     x=o \ P I

_ÍF(a/A),    iîAïÊO(modp),

' [0, iîA =0(modp),

where a, b, c,A, B, C are integers; D, A, d are defined by

D = B2-4AC,   A = 4aC - 2bB + 4cA,   d = b2 - 4ac;

and

A2 - 4Dd = 16{(aC - cA)2 - (aB - bA)(bC - cB)} S 0   (mod/»).

The prime ( ') in (1) indicates that the summation excludes terms for which

Ax2 + Bx + C = 0 (mod/)). Note that at least one of a, A is nonzero

(mod/?); that if A = B = 0 (mod/?) then C ^ 0 (modp); that if aB - bA =
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0 (mod/?) then aC - cA ^ O (modp); and that ax2 + bx + c and Ax2 + Bx

+ C do not have a common root (mod p).

It is the purpose of this note to show how (1) can be used to evaluate the

character sum 2£~ô(-^), for certain quartic polynomials/(x). First we take

E(x) = (f ) in (1). As 2^(f ) - 0, we obtain

v' / (a*2 + bx + c)(Ax2 + Bx + C)

x = 0

-ïi'-^^vm «p-1 ( x(Dx2 + Ax + d)

*=o

If we choose a, b, c, A, B, C so that y2 = x3 + Ax2/D + dx/D is an elliptic

curve over Q with complex multiplication, then

'"' / x(Dx2 + Ax + d)

*-o\ P~

can be evaluated explicitly using Deuring's theorem [9]. The sum

p~x I (ax2 + bx + c)(Ax2 + Bx + C)

¿o\ P

can then be evaluated using (2). (For Deuring's theorem applied to the

evaluation of character sums, see for example [16], [17], [20], [21], and for lists

of elliptic curves with complex multiplication, see [10], [22].) We give some

examples.

Example 1. The elliptic curve Ex given by y2 = x3 + kx has complex

multiplication by V — 1 . Writing End^,) for the ring of endomorphisms of

Ex, we have in this case

End(Ex) = Z + Z(Y^Ï)       [10].

The corresponding character sum

:?:(^)-:?:{-(7)}(^)-i:(^)

= s'f^v1) + l    (P\2k)
x=0\        P        I

was first treated by Jacobsthal [12] and later, from various points of view, by

other authors, see for example Berndt and Evans [1], Bürde [4], Chowla [6],

Davenport and Hasse [8], Lehmer [13], Morlaye [15], Raj wade [19], Singh

and Rajwade [24], Whiteman [25], [26]. Some of these authors use only

elementary methods (for example [1], [13]), others do not (for example [8],

[19]). If p = 1 (mod 4) we define an integer xx uniquely by

p = x2 + y\,   x, = - 1    (mod 4).
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Then we have [1, Theorem 4.4]

±2yx, ifp = 1 (mod 4),     (£)--!,

293

o^lx(x2 + k)

¿ol"     P

0, if p = 3 (mod 4).

Hence, if A = 0 (mod/?), d = Dg2 ̂  0 (mod/?), from (2) we have

p_,1 / (ax2 + ¿>x + c)(v4x2 + Bx + C)

x=o\ ~P~

2(y)*,-(y),    dp si (mod 4),

-( —)> if/» = 3 (mod 4).

(3)

Let a = t,   b = t + \,   c = 1,

A = t + I,   5 = 2,    C = 0,

where < ̂  0, ± 1 (mod /»). Then

¿ = (i-l)2,   A = 0,   D = 4,   g=±\(t-\)   (mod/?),

and (3) gives

/>-> / x(x + l)(tt + 1)((/ + l)x + 2)

x = 0

{^v-emI —- U, - 1 — — I,    if/» s 1 (mod 4),

/ '(' + O \
--   , if/? = 3 (mod 4).

The special case / = 3 gives the result (see Chowla [7])

2(f)**~(f)'    if^ = 1(mod4)'
y" / 6x4 + llx3 + 6;c2-t-;c \ _

¿oí       *       r ■Í-V if/» = 3 (mod 4).

Example 2. The elliptic curve E2 given by y2 = x3 - 4kx2 + 2k2x has

complex multiplication by V - 2 ,

End(£2) = Z + Z(V^2)       [10].
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The sum

V / x3 - 4/cx2 + 2A:2x2
x = 0 V

(p\2k)

was first considered by Brewer [3] and later by other authors (some using only

elementary methods), Berndt and Evans [2], Leonard and Williams [14],

Rajwade [16], [20], Whiteman [27], Williams [30]. If p = 1 or 3 (mod 8), we

define an integer x2 uniquely by

p = x\ + 2y\,   x2 = 2[/>/8] - 1    (mod 4).

Then we have [2, Theorems 5.12 and 5.17]

'" ' / x(x2 - 4kx + 2k2)

x?0r   ~p~

2( — )x2,    Up = 1 or 3 (mod 8),

if p = 5 or 7 (mod 8).0,

Hence, if A = -4Dg 2ê 0 (mod/)), d = 2Dg2 5é 0 (mod/?), from (2) we have

p~x I (ax2 + bx + c)(Ax2 + Bx + C)

x=o\ ~P~

2( — )x2 - ( — I    UP = 1 or 3 (mod 8),

-( —)» if/> = 5 or 7 (mod 8).

(4)

Let / be such that t ^ 0 (mod p), and set

a = 1,   b = 2t,   c = -t2,

A = 1,   B = t,    C = 0,

so that

d = 8t2,   A= -8f2,   D = t2,   g = 2.

Then, from (4), we have

V / (*2 + 2/x - t2)(x2 + tx)\      [2( | )x2 -

*=o\ /> / "   I -l

1,    if/» = 1 or 3 (mod 8),

if p = 5 or 7 (mod 8).

Example 3. The elliptic curve E3 given by y2 = x3 - 3/bc2 + 3A:2x has

complex multiplication by |(-1 + V- 3 ),

End(£3) = Z + zl ~1+2^A=I  )        [10].
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The sum

x = 0\

(p\3k)

was first treated by von Schrutka [23] (using only elementary arguments) and

later by a number of other authors including Berndt and Evans [1], Chowla

[5], Davenport and Hasse [11], Lehmer [13], Rajwade [17], [18], Whiteman

[25], [26], Williams [29]. If/» = 1 (mod 3), we define an integer x3 uniquely by

/? = x2 + 3yj,   x3= -I   (mod 3).

Then we have ([1, Theorem 4.1] or [17, Theorem 1])

- 3kx + 3k2) 21 — \x3,    if p = 1 (mod 3),

if/? = 2 (mod 3).0,

Hence, if A = -3Dg hé 0 (mod/?), d = 3Dg2 2é 0 (mod/?) from (2) we have

p~] ( (ax2 + bx + c)(Ax2 + Bx + C)

2(y)*3-(y)>    if^ = l(mod3),

-( — )> if P = 2 (mod 3).

(5)

Let t ^ 0 (mod/?) and set

a = 1,   b = 4t,   c = t2,

A = 1,   B = 2t,   C = 0,

so that

d=l2t2,   A=-I2t2,   D = 4t2,   g=\.

Then, from (5), we have

SÍ"'*4"*''*''*2"'
2x3 — 1,    if/? s 1 (mod 3),

-1, if/? = 2 (mod 3).

Example 4. The elliptic curve £7 given by^2 = x3 + 21 kx2 + 112&2;t has

complex multiplication by \(-1 + V— 7 ),

End(£7) = Z + Z(i(-1 +\^7 ))       [10], [21], [22].
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The corresponding character sum

p-^l( x3 + 2lkx2 + H2k2x \    ,   .....IX-ï-) (p|42t)

has recently been evaluated by Rajwade [21] by appealing to Deuring's

theorem. No elementary proof of Rajwade's result is known at this time.

If p = 1, 2 or 4 (mod 7), we define an integer x7 uniquely by

p = x2 + ly2,   x7 = 6, 3, 5   (mod 7) respectively.

Rajwade proved

21 — Jx7,    if/) = 1, 2 or 4 (mod 7),

if p = 3, 5 or 6 (mod 7).0,

Hence, if A = 21£>g je 0 (mod/)), d = \\2Dg2 sé 0 (mod/)), from (2) we

have

p~x I (ax2 + bx + c)(Ax2 + Bx + C)

Al" ~P~

2[ — 1*7 - ( — ).    tip = 1, 2 or 4 (mod 7),

if/) = 3, 5 or 6 (mod 7).

(6)

Let / *ê 0 (mod p) and choose

a = 1,   b - 6t,   c = 2/2,

A - 3,   fi = 16/,    C = 0,

so that

</ - 28/2,   A = - 168i2,    D = 256i2,   g =

Then, from (6), we have

'" ' / (x2 + 6/x + 2/2)(3x2 + 16/jc)

¿à

-1/32.

2Í — )x7 - ( - V    if/) s 1,2 or 4 (mod 7),

-1 — ), if p = 3, 5 or 6 (mod 7).
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We remark that similar examples follow using the elliptic curves [10]:

E[ :y2 = x3 - 6kx2 + k2x,   End(E{ ) = Z + Z(2\Tr\ ),

E'3 : y2 = x3 - 6kx2 - 3k2x,   End(E; ) = Z + Z (V=3 ),

E^:y2 = x3 - 42kx2 - lk2x,   End(£7 ) = Z + Z(V=1 ),

as the defining cubic in each case has no constant term.

Finally we take

vi >     / g*2 + hx + k

in (1), where g ïé 0 (mod/») and h2 - 4gk 2é 0 (mod/?). As

P~X  I    „v-2  -U   Av  -I-   k%e*f*)-w
we obtain

g(a.v2 + bx + c )  + /i(ax2 + fev + r)(/lx2 + 5.x + C) + A:(/lx2 + 5x + C)

=  2
Y = 0

;.v2 + hx + k)(Dx2 + Ax + d)

(?)-(

ga2 + /ia/1 + Avl2
,    if/l ïÉ0(mod/>),

0.    iM =0(mod/»),    S^O(modp),

-(-).   ¡(A =0(mod/>),   5 = 0(mod/»). (7)

One can use (7) in conjunction with (3), (4), (5) or (6) to obtain further

evaluations. We give three examples to illustrate the ideas, all of which were

conjectured by B. C. Berndt and R. J. Evans (personal communication). The

author would like to thank Professor Berndt for a helpful discussion in

connection with the preparation of this note.

Example 5. For/? > 2 we have

V / x4 - 8x3 + 12jc2 - \6x + 4 \p-i i

x = 0\

= x%{ P i

P-* I (x2 + 8x + 8)(x2 - 8)
(by (7))

21 — \xx - 1,    if/» = 1 (mod 4),
(by (3)).

-1, if /? = 3 (mod 4)
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Example 6. For/) > 3 we have

8x3 + 12x2 - 8x + 4
P~x I     4

2   ^
* = o V

4x + 4)2 - 12(x - l)2

P

(x2 - \2)(x2 + 4x)

J 2x3 - 1,    if/) = 1 (mod 3)

[ - 1, if p = 2 (mod 3)

Example 7. For/) > 7 we have

^' / x4 - 14x3 + 63x2 - 98x + 21

(by (7))

'   (by (5)).

21 —
P

(x2 - Ix + if - 28 \

P /

(-28x2+ l)(21x2 + 4x)
(^)-i   (by(7))

if/) = 1,2, 4 (mod 7),

if/) = 3, 5, 6 (mod 7)     v     v "
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