REFLEXIVE MODULES OVER CERTAIN DIFFERENTIAL POLYNOMIAL RINGS

A. HAGHANY

ABSTRACT. Let K be a commutative Noetherian integral domain with a derivation d and let R = K[x, d]. When K is quasi-normal and d is suitably restricted we shall give several equivalent conditions for an R-module to be reflexive. The relations between K and R in the context of reflexivity are also investigated.

- 1. Introduction and preliminaries. Our aim in this note is to give necessary and sufficient conditions for modules over a class of Noetherian differential polynomial domains to be reflexive. Let K be a ring with a derivation d, and let R = K[x, d] denote the ring of differential polynomials over K in the derivation d. As abelian groups R = K[x], but multiplication in R is given by the rule kx = xk + d(k). The study of reflexive R-modules is naturally closely related to the properties of K, and so for K we shall take a commutative Noetherian domain over which the reflexive modules are known. So far, quasi-normal domains [7] seem to be the most general commutative Noetherian domains over which the reflexive modules are characterized. In view of [3, Theorem 3.8] a commutative Noetherian domain K is quasi-normal if and only if it has the following properties:
 - (i) The localisation K_p is Gorenstein for any height-1 prime P.
 - (ii) Any ideal of grade 1 in K has height 1.

Now let the domain K be quasi-normal with a derivation d, and let R = K[x, d]. With a condition on d it is shown that a finitely generated left R-module M is reflexive if and only if there exists a finitely generated free left R-module F, containing M, such that any prime in K associated to F/M has height ≤ 1 . One other equivalent condition is that M is torsion-free and $\operatorname{Ext}_K^1(K/P, M) = 0$ for all primes P with height at least 2. We shall also investigate the necessity of conditions imposed on K, K and find properties for K corresponding to those of K.

Let R be any ring, M an R-module. The abelian group $\operatorname{Hom}_R(M, R)$, endowed with the usual R-module structure is denoted by M^* . The module M is called torsion-less if the natural homomorphism $\theta \colon M \to M^{**}$ is a

Received by the editors March 21, 1978 and, in revised form, June 23, 1978.

AMS (MOS) subject classifications (1970). Primary 16A49; Secondary 13C10.

Key words and phrases. Reflexive module, ring of differential polynomials, quasi-normal.

© 1979 American Mathematical Society

© 1979 American Mathematical Society 0002-9939/79/0000-0105/\$02.50

314 A. HAGHANY

monomorphism; M is called reflexive if θ is an isomorphism. Now suppose that R is a Noetherian integral domain with full ring of quotients Q. If M is a finitely generated torsion-free R-module then M is torsion-less. Let I be a nonzero finitely generated left R-submodule of Q. Then I^* is naturally isomorphic with $I^{-1} = \{q \in Q : Iq \subseteq R\}$. Clearly I is reflexive if and only if $I = (I^{-1})^{-1}$. Writing I^* for I^{-1} , we have that $I \subseteq I^{**}$ and $I^* = I^{***}$.

Again let K be a ring with a derivation d. An ideal I of K is called d-invariant if $d(I) \subseteq I$. If no nonzero proper ideal of K is d-invariant we say that K is d-simple. A useful formula giving the global dimension of R = K[x, d] is due to K. R. Goodearl [2, Theorem 23] which we state as:

THEOREM 1.1. Let R = K[x, d] where K is commutative Noetherian of finite global dimension n. Set

$$k = \sup\{ pd_K(K/J): J \text{ is a primary d-invariant ideal } \}.$$

Then gl dim $R = \max\{n, k+1\}$.

2. Reflexivity for R = K[x, d]. Throughout this section K will be a commutative Noetherian domain (not a field) with a derivation d and R = K[x, d]. If k_1, k_2 is a K-sequence in K then R/Rk_1 is nonzero and k_2 is not a zero-divisor on R/Rk_1 . For an ideal P of grade ≥ 2 we thus, by the standard properties of grade, have that $\operatorname{Ext}_K^1(K/P, R) = 0$.

LEMMA 2.1. Let k_1 , k_2 be a K-sequence in K, M a left R-module such that $M^*k_1 \neq M^*$. Then k_2 is not a zero-divisor on M^*/M^*k_1 .

PROOF. The sequence $0 \to R \to R \xrightarrow{\rho} R/Rk_1 \to 0$, where ρ is right multiplication by k_1 , is an exact sequence of left R-modules. This yields the exact sequence of right K-modules,

$$0 \to M^* \xrightarrow{\rho} M^* \to \operatorname{Hom}_R(M, R/Rk_1)$$
.

Thus M^*/M^*k_1 is isomorphic to a right K-submodule of $\operatorname{Hom}_R(M, R/Rk_1)$, hence it suffices to show that k_2 is not a zero-divisor on $\operatorname{Hom}_R(M, R/Rk_1)$. Let $f \colon M \to R/Rk_1$ be a nonzero R-homomorphism with $f(m) = r + Rk_1$ for some $m \in M$, $r \in R \setminus Rk_1$. If $fk_2 = 0$ then $0 = (fk_2)(m) = (f(m))k_2 = rk_2 + Rk_1$. This means that k_2 is a zero-divisor on R/Rk_1 , which it is not.

Let P be any prime ideal of K. The derivation d can be uniquely extended to a derivation \bar{d} : $K_P \to K_P$. We now characterize reflexive R-modules when K is quasi-normal domain, K_P is \bar{d} -simple for all height-1 primes P. In the following, associated primes are always associated primes in K.

THEOREM 2.2. Let K, d be as just stated. The following conditions are equivalent for a finitely generated left R-module M.

- (1) M is reflexive as an R-module.
- (2) M is a torsion-free R-module and $\operatorname{Ext}_K^1(K/P, M) = 0$ for all prime ideals P with height $(P) \ge 2$.

- (3) There exists a finitely generated free left R-module F containing M such that any prime associated to F/M has height ≤ 1 .
- (4) M is torsion-free as an R-module and whenever k_1 , k_2 is a K-sequence in K with $k_1M \neq M$ then k_2 is not a zero-divisor on M/k_1M .

PROOF. (2) \Rightarrow (1). Since M is a finitely generated torsion-free R-module and since R has a two-sided quotient division ring we can deduce that M is torsion-less. Let now P be a prime of height ≤ 1 in K. The ring $S = K_P[x, \bar{d}]$ is a right and left partial quotient ring of R which is hereditary by Theorem 1.1. Thus tensoring the exact sequence

$$0 \to M \xrightarrow{\theta} M^{**} \to \text{Coker } \theta \to 0$$

with S it follows that $S \otimes_R N = 0$, where $N = \text{Coker } \theta$. Suppose $N \neq 0$; then from $0 = S \otimes_R N \simeq (K_P \otimes_K R) \otimes_R N \simeq K_P \otimes_K N$ we deduce that any associated prime of N must have height ≥ 2 . Let P be an associated prime of N. Then we have an exact sequence

$$\operatorname{Hom}_{\kappa}(K/P, M^{**}) \to \operatorname{Hom}_{\kappa}(K/P, N) \to \operatorname{Ext}^{1}_{\kappa}(K/P, M).$$

The first term of the above sequence is clearly zero, and the last term vanishes by (2). This contradiction shows that N=0 and hence M is reflexive.

 $(3) \Rightarrow (2)$ Let $0 \to M \to F \to F/M \to 0$ be exact with F the given finitely generated free. Clearly M is torsion-free. Let P be a prime in K with height $(P) \ge 2$. Then there is an exact sequence

$$\operatorname{Hom}(K/P, F/M) \to \operatorname{Ext}^1(K/P, M) \to \operatorname{Ext}^1(K/P, F)$$
.

Now Hom(K/P, F/M) = 0 by (3); and since F is finitely generated there is an isomorphism $\operatorname{Ext}^1(K/P, F) \simeq \bigoplus \operatorname{Ext}^1(K/P, R)$. But grade (P) > 2, so that $\operatorname{Ext}^1(K/P, R) = 0$. Therefore $\operatorname{Ext}^1(K/P, M) = 0$.

- (1) \Rightarrow (4) M is torsion-free since by assumption $M \simeq (M^*)^*$. Now applying Lemma 2.1 (in its right-hand version) we deduce (4).
- $(4) \Rightarrow (2)$ Assume that P is a prime in K with height (P) > 2. Then there is a K-sequence k_1 , k_2 in P. Since by assumption M is torsion-free, k_1 is not a zero-divisor on M, and hence by [6, Theorem, p. 101],

$$\operatorname{Ext}^1_K(K/P, M) \simeq \operatorname{Hom}_K(K/P, M/k_1M).$$

If now $M/k_1M \neq 0$ it follows, by (4), that $\operatorname{Hom}_K(K/P, M/k_1M) = 0$ since $k_2 \in P$. Therefore $\operatorname{Ext}^1_K(K/P, M) = 0$.

That (1) implies (3) is easy.

Theorem 2.2 is a generalisation of [4, Theorem 3.7] which proved (when the base ring K is d-simple) that a nonzero proper left ideal I of R is reflexive if and only if any associated prime of R/I has height ≤ 1 .

In order to investigate the necessity of conditions imposed on K in the above theorem we first prove two lemmas.

LEMMA 2.3. Grade and height 1 coincide in K if and only if any associated prime of R/Rc, where c is a nonzero nonunit in R, has height ≤ 1 .

PROOF. Assume that grade and height 1 coincide in K and let P be a prime in K associated to R/Rc, where c is a nonzero nonunit in R. We must show that if $P \neq 0$, then height (P) = 1. Assume then $P \neq 0$, and let $r \in R \setminus Rc$ be such that $Pr \subseteq Rc$. So $RPr \subseteq Rc$ which gives $c^{-1}R \subseteq r^{-1}(RP)^*$. It is easy to see that $(RP)^* = P^*R$, and hence $RP^{**}r \subseteq Rc$ which then shows that P cannot have grade ≥ 2 . Therefore height (P) = 1.

Conversely assume that associated primes of R/Rc are all of height ≤ 1 . In order to show that grade and height 1 coincide in K it is sufficient to prove that any nonzero principal ideal of K is height unmixed. Let P be an associated prime of Kc, where c is a nonzero nonunit in K. There exists an ideal M containing c such that $M/Kc \simeq K/P$. Since R is K-free $R/RP \simeq R \otimes K/P \simeq R \otimes M/Kc \simeq RM/Rc$, so that R/RP is isomorphic to a submodule of R/Rc. Clearly $P \in Ass(R/RP) \subseteq Ass(R/Rc)$, hence by assumption height (P) = 1.

LEMMA 2.4. Let M be a finitely generated left R-module such that the grade of any prime associated to M is at least 2. Then $\operatorname{Ext}^1_R(M,R)=0$.

PROOF. By assumption $0 \notin Ass(M)$ and so 0 is not associated to any factor module of M. Now the proof of [1, Lemma 4] shows that there is a chain

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$$
,

of R-submodules such that $M_i/M_{i+1} \simeq R/RP_i$ $(i=0,\ldots,n-1)$ where P_i is a nonzero prime in K. An induction argument on n using the fact that for a prime ideal P of K, $Ass(R/RP) = \{P\}$ shows that

$$\operatorname{Ass}(M) \subseteq \{P_0, \ldots, P_{n-1}\} \subseteq \operatorname{Supp}(M)$$

and that these sets have the same minimal elements. Therefore each P_i is of grade at least 2. Since R is an integral domain $M_{n-1}^* = 0$ and hence $M_i^* = 0$, for all i. We now proceed by induction on n. If n = 1, then $\operatorname{Ext}_R^1(M, R) \simeq \operatorname{Ext}_R^1(R/RP_0, R) \simeq (RP_0)^*/R = 0$ since grade $(P_0) \ge 2$ implies that $P_0^* = K$ and so $(RP_0)^* = R$. Let n > 1, and assume the result for all finitely generated left R-modules which have series of length < n. Then from $0 \to M_1 \to M \to M/M_1 \to 0$ we obtain the exact sequence of right R-modules

$$0 \to \operatorname{Ext}^1_R(M/M_1, R) \to \operatorname{Ext}^1_R(M, R) \to \operatorname{Ext}^1_R(M_1, R)$$
.

The lemma now follows by induction.

THEOREM 2.5. The following statements are equivalent.

- (1) K is quasi-normal and K_P is d-simple for all primes P in K of height ≤ 1 .
- (2) R satisfies: (i) For nonzero left ideals $I \subseteq J$ of R, $I^* = J^*$ implies that $\operatorname{Ext}^1_R(J/I, R) = 0$;
- (ii) A nonzero proper left ideal I of R is reflexive if and only if any associated prime of R/I has height at most 1.

PROOF. (1) \Rightarrow (2). We only need to show that (i) holds. Let $0 \neq I \subseteq J$ be left ideals in R with $I^* = J^*$. Since R has a hereditary two-sided partial quotient ring, namely $F[x, \bar{d}]$ where F is the quotient field of K, by [5, Lemma 2.1], the K-module J/I is torsion. Hence $0 \notin \operatorname{Ass}(J/I)$. Now let P be a height-1 prime associated to J/I. Then there is a left ideal L such that $I \subseteq L \subseteq J$ and $L/I \cong R/RP$. Clearly $L^* = I^*$ and again by [5, Lemma 2.1], $R_PL = R_PI$ where $R_P = K_P[x, \bar{d}]$ which is hereditary since K_P is \bar{d} -simple. But then $R_P = R_PP$, an obvious contradiction. It follows that any associated prime of J/I has height $\geqslant 2$ and thus (i) follows by Lemma 2.4.

 $(2) \Rightarrow (1)$. By Lemma 2.3 grade and height 1 coincide in K. Let P be a height-1 prime. To show that K_P is Gorenstein, by [6, Theorem 222], it is enough to prove that any nonzero ideal of K_P is reflexive. Let $I \subseteq P$ be a nonzero ideal of K such that I_P is nonreflexive. Thus $I \neq I^{**}$ and $P \in$ $\operatorname{Supp}(I^{**}/I)$. Since P is a minimal element of $\operatorname{Supp}(I^{**}/I)$, there are ideals $I \subseteq L \subseteq M \subseteq I^{**}$ such that $M/L \simeq K/P$. Since $I^* = I^{***}$, we have $L^* = I^{**}$ M^* and hence $(RL)^* = (RM)^*$ which by (i) implies that $\operatorname{Ext}^1_R(RM/RL, R)$ = 0. But $RM/RL \simeq R/RP$, so that $0 = \operatorname{Ext}_{R}^{1}(R/RP, R) \simeq (RP)^{*}/R$. This gives grade $(P) \ge 2$ which is impossible. It remains to show that K_P is \bar{d} -simple. To see this we show that $S = K_P[x, \bar{d}]$ is hereditary and then apply Theorem 1.1. Any left ideal of S is of the form SI where I is a left ideal of R. Suppose that SI is a nonzero nonreflexive left ideal of S. Then the set of primes in K_P associated to $(SI)^{**}/SI$ is nonempty and contains only PK_P as K_P is a local domain of dimension 1 and $(SI)^{**}/SI$ is a nonzero torsion K_P -module. We can now deduce that $PK_P \in Ass(SI^{**}/SI)$, and hence $P \in Ass(I^{**}/I)$ since K is Noetherian. Now as before we can derive the contradiction grade $(P) \ge 2$. Thus in the Noetherian integral domain S (which is of finite global dimension) every nonzero left ideal is reflexive. It follows that S is hereditary and the proof is complete.

Theorem 2.5 should perhaps be compared with [3, Theorem 3.8] which proves that a commutative Noetherian domain K is quasi-normal if and only if K has the following properties:

- (i) If $I \subseteq J$ are nonzero ideals in K, then $I^* = J^*$ implies $\operatorname{Ext}^1(J/I, K) = 0$.
 - (ii) Any nonzero reflexive ideal in K is unmixed of height one.

Finally using the methods of the proof for the above theorem and applying Lemma 2.4, the following corollary may easily be proved.

COROLLARY 2.6. Let K be quasi-normal such that K_P is \bar{d} -simple whenever P is a height-1 prime. Let $0 \neq I \subseteq J$ be left ideals in R. Then:

- (i) If $0 \notin \operatorname{Ass}(J/I)$ then $I^* \neq J^*$ if and only if $\operatorname{Ass}(J/I)$ contains a height-1 prime.
 - (ii) $I^* = J^*$ if and only if $\text{Ext}_R^1(J/I, R) = 0$.
 - (iii) If $Ass(J/I) = \{P\}$ and if J is reflexive then

$$J^* \neq I^* \Leftrightarrow \text{height}(P) = 1 \Leftrightarrow I \text{ is reflexive.}$$

REFERENCES

- 1. K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315-322.
- 2. _____, Global dimension of differential operator rings. II, Trans. Amer. Math. Soc. 209 (1975), 65-85.
 - 3. A. Haghany, On duality and Krull-dimension, J. London Math. Soc. (2) 14 (1976), 79-85.
- 4. _____, Reflexive ideals in simple Ore extensions, J. London Math. Soc. (2) 16 (1977), 429-436.
- 5. R. Hart, Krull dimension and global dimension of simple Ore extensions, Math. Z. 121 (1971), 341-345.
 - 6. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970.
 - 7. W. V. Vasconcelos, Quasi normal rings, Illinois J. Math. 14 (1970), 268-273.

DEPARTMENT OF MATHEMATICS, PAHLAVI UNIVERSITY, SHIRAZ, IRAN